NUREG/CR-5490 PNL-7190 Vol. 1 # Regulatory Instrument Review: Management of Aging of LWR Major Safety-Related Components Prepared by E. V. Werry Pacific Northwest Laboratory Operated by Battelle Memorial Institute Prepared for U.S. Nuclear Regulatory Commission #### **AVAILABILITY NOTICE** Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: - The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555 - 2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082 - 3. The National Technical Information Service, Springfield, VA 22161 Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence. The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission. Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries. Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited. Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Information Resources Management, Distribution Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018. #### **DISCLAIMER NOTICE** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. NUREG/CR-5490 PNL-7190 Vol. 1 R9, RV # Regulatory Instrument Review: Management of Aging of LWR Major Safety-Related Components Manuscript Completed: May 1990 Date Published: October 1990 Prepared by E. V. Werry Pacific Northwest Laboratory Richland, WA 99352 Prepared for Division of Engineering Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 NRC FIN B2865 #### **ABSTRACT** This report comprises Volume 1 of a review of U.S. nuclear plant regulatory instruments to determine the amount and kind of information they contain on managing the aging of safety-related components in U.S. nuclear power plants. The review was conducted for the U.S. Nuclear Regulatory Commission (NRC) by the Pacific Northwest Laboratory (PNL) under the NRC Nuclear Plant Aging Research (NPAR) Program. Eight selected regulatory instruments, e.g., NRC Regulatory Guides and the Code of Federal Regulations, were reviewed for safety-related information on five selected components: reactor pressure vessels, steam generators, primary piping, pressurizers, and emergency diesel generators. Volume 2 will be concluded in FY 1991 and will also cover selected major safety-related components, e.g., pumps, valves and cables. The focus of the review was on 26 NPAR-defined safety-related aging issues, including examination, inspection, and maintenance and repair; excessive/ harsh testing; and irradiation embrittlement. The major conclusion of the review is that safety-related regulatory instruments do provide implicit guidance for aging management, but include little explicit guidance. The major recommendation is that the instruments be revised or augmented to explicitly address the management of aging. # **CONTENTS** | ABST | RACT | | | | | | | | • | • | | • | • | • | • | • (| • | • | • | • | • | iii | |------|-------|----------|-------|----------------|------|------|-------|-------|------|----------|-----|-----|-----|------------|-----|-----|---|---|---|---|---|-----| | PREF | ACE | | | | • | | | | • | • | | • | • | | • | | • | • | | • | | vii | | ACKN | OWLED | GMENTS | | | • | | | | • | | | • | • | • | | | | • | • | • | • | ix | | ACRO | NYMS | | | | • | | | | | | | • | • | | • | | | • | • | • | • | хi | | SUMM | ARY | | | | • | • • | | | • | | | • | • | • | • | | | • | • | • | • | χV | | 1.0 | INTR | ODUCTION | N/PUR | POSE. | • | | | | • | • | | • | | | • | | | | | • | • | 1.1 | | 2.0 | | CTION OF | | TRUME | ENTS | , C(| OMPO! | NENT | s / | AND
• | IS | SUI | ES, | Α. | ND | | | • | • | • | • | 2.1 | | | 2.1 | REGULAT | ГORY | INSTF | RUME | NTS | REV | I EWE | D. | | | • | | • | • | | | | | • | • | 2.1 | | | 2.2 | MAJOR (| COMPO | NENTS | S . | | | | | | | | • | | • | | | • | • | | • | 2.3 | | | 2.3 | AGING 1 | ISSUE | S | | | | | | | | | | | • | | • | • | | | • | 2.4 | | | 2.4 | REVIEW | CRIT | ERIA. | • | | | | • | • | | | | | | | | | | • | • | 2.6 | | | 2.5 | REVIEW | METH | iodolo |)GY | | | | • | • | | • | • | | | | | • | | | • | 2.7 | | | 2.6 | REVIEW | EXAM | IPLES. | • | | | | | • | | • | | • | • | | | | | • | • | 2.8 | | 3.0 | DISC | USSION. | | | | | | | | | | | | | | | | | | • | • | 3.1 | | | 3.1 | REGULAT | ГORY | INSTF | RUME | NTS | AND | AG1 | NG | MA | NAG | EMI | ENT | ٠. | • | | • | | | • | • | 3.1 | | | 3.2 | REGULAT | ΓORY | INSTF | RUME | NTS | AND | THE | : A(| GIN | G I | SSU | JES | ; . | • | | | • | • | | | 3.1 | | | | 3.2.1 | Code | of F | ede | ral | Reg | ulat | ioi | ns | | • | • | | | | | • | • | | • | 3.1 | | | | 3.2.2 | Tech | nical | Sp | eci | fica | tior | ıs. | • | | | • | • | • | | • | • | | | • | 3.3 | | | | 3.2.3 | Stan | dard | Rev | iew | Pla | ns . | • | • | | | • , | • | • • | | | | • | | • | 3.4 | | | | 3.2.4 | Regu | ılator | y G | uid | es . | | | | | | • | | • | | • | | • | • | • | 3.4 | | | | 3.2.5 | ASME | Boil | er | and | Pre | ssur | e I | /es | sel | | • | | • | | | | | • | • | 3.5 | | | | 3.2.6 | Gene | ric S | Safe | ty : | Issu | es . | | | | | • | | | | | • | • | • | • | 3.6 | | | | 3.2.7 | | itute
dards | | | | | | | | | | | | | | | | | | 3.7 | | | | 3.2.8 | America | n Nuclea | r Socie | ety St | tandai | rds. | • • | • | • • | • | • | • | 3.8 | |-------|--------|-----------------|--------------------|---------------------|-------------------|--------|--------|------|------|-----|------|------|---|---|-------| | | | 3.2.9 | General | Correla | tion of | f Impl | lied / | Agin | g | • | | | • | • | 3.8 | | 4.0 | CONC | LUSIONS | AND RECO | OMMENDAT | IONS . | • • • | | | | • | | | | • | 4.1 | | | 4.1 | CONCLUS | IONS | | | • • • | | | | • | | | | • | 4.1 | | | 4.2 | RECOMME | NDATION: | s | | • • • | | | | • | | • | | • | 4.] | | 5.0 | SUGG | ESTED FU | TURE REG | GULATORY | INSTRU | JMENT | REVI | EW A | CTIV | ITI | ES. | • | | • | 5.1 | | | 5.1 | CONTINU | ATION O | F THE GU | IDE TO | REGUI | _ATOR | Y IN | STRU | MEN | TS. | | | • | 5.1 | | | 5.2 | COMPUTE | R DATA | BASE FOR | THE RE | GULA | TORY : | INST | RUME | NT | REV: | IEW. | | | 5.1 | | 6.0 | OBSE | RVATIONS | OUTSID | E THE SC | OPE OF | THE I | REVIE | W | | • | | • | | • | 6.1 | | 7.0 | REFE | RENCES. | | | | • • | | | | • | | • | | • | 7.1 | | APPEI | NDIX | I - GLOS | SARY OF | AGING I | SSUES | • • | | | | • | | • • | • | • | I.1 | | APPE | NDIX | II - REG
REA | ULATORY
CTOR PR | INSTRUM
ESSURE V | ENT REV
ESSEL. | /IEW I | FOR | | | • | | | | • | II.1 | | APPE | NDIX | III - RE
ST | GULATOR' | Y INSTRU | MENT RE | VIEW | FOR | | | • | | • | | • | 111.1 | | APPE | NDIX | | | INSTRUM
PING | | | | | | • | | • • | | • | IV. | | APPE | NDIX ' | | | INSTRUME
(INTERN | | | | PIPI | NG). | • | | • • | | • | ۷.1 | | APPE | NDIX ' | | | INSTRUM | | | FOR | | | | | | | | VT 1 | # <u>PREFACE</u> This report was developed to provide a preliminary assessment regarding the extent of those regulatory instruments that contain information pertinent to managing aging. Assessments of the applicable regulatory instruments regarding aging management is complex and subject to differences in interpretation. Therefore, the perspectives in this report should be considered preliminary. These perspectives are not established needs or views and do not reflect regulatory positions or requirements. #### **ACKNOWLEDGMENTS** The author of this report acknowledges the support and technical guidance provided by J. P. Vora and C. Z. Serpan, Jr., of the
Nuclear Regulatory Commission (NRC) during the course of the regulatory instrument review task under the Nuclear Plant Aging Program. A special thanks goes to V. N. Shah of the Idaho National Engineering Laboratory for his contribution to the review by providing the "Understanding and managing aging tables and figures for the RPVs and reactor piping systems." The author also wishes to thank the following Pacific Northwest Laboratory staff for their contributions to this report: A. B. Johnson, Jr., for Project Management support and technical guidance; and to E. F. Love, P. M. Daling, B. W. Smith, S. H. Bush, W. N. McElroy, J. W. Jaeckle, S. R. Doctor, J. C. Spanner, K. R. Hoopingarner, R. J. Kurtz, R. H. Ferris and W. B. Scott for their expertise, review of the instruments, and input to the review of the regulatory instruments. A special thanks to J. W. Nageley for his timely editing effort for the review and report. #### **ACRONYMS** A&E Architect Engineer ACI American Concrete Institute ANL Argonne National Laboratory ANS American Nuclear Society ANSI American National Standards Institute, Inc. ASME American Society of Mechanical Engineers ASTM American Society of Testing and Materials **BPVC** Boiler and Pressure Vessel Code Branch Technical Position BTP BWR Boiling Water Reactor CCS component, systems or structure CFR Code of Federal Regulations diminishing manufacturing source DMS EDG emergency diesel generator **EMTB** Material Engineering Branch Electric Power Research Institute **EPRI FSAR** Final Safety Analysis Report GDC General Design Criteria GSI Generic Safety Issues HAZ heat affected zone HPI high pressure injection IEEE Institute of Electrical and Electronic Engineers IGSCC intergranular stress corrosion cracking ISI inservice inspection LE life extension NDE nondestructive examination NDT nondestructive testing NFC National Fire Code NPAR Nuclear Plant Aging Research NPP nuclear power plant NRC Nuclear Regulatory Commission NSSS nuclear steam supply system NUMARC Nuclear Management and Resources Council NUPLEX Nuclear Plant Life Extension NUREG Nuclear Regulatory Commission Report PLEX Plant Life Extension PNL Pacific Northwest Laboratory P/T pressure/temperature PTS pressurized thermal shock PVRC Pressure Vessel Research Committee PWR pressurized water reactor QA quality assurance RCC reactor core cooling RCPB reactor coolant pressure boundary RCS reactor coolant system RG NRC Regulatory Guides RHR residual heat removal RPV reactor pressure vessel $RT_{(NDT)}$ reference nil-ductility temperature SAR Safety Analysis Report | SCC | stress corrosion cracking | |-----|----------------------------| | SG | steam generator | | SRP | Standard Review Plan | | SSE | safe shutdown earthquake | | SWG | Special Working Group | | TDI | Transamerican DeLaval Inc. | | TS | Technical Specification | #### SUMMARY This report comprises Volume 1 of a review of U.S. nuclear plant regulatory instruments to determine the extent that they contain information pertinent to managing aging of safety-related components in nuclear power plants. The instrument review was conducted for the U.S. Nuclear Regulatory Commission (NRC) under the NRC Nuclear Plant Aging Research (NPAR) program. As used in this report, an "instrument" is a procedure or document as in an instrument of government, e.g., the Code of Federal Regulations. The terms regulatory instruments or instruments are used throughout this report and in this context are not to be confused with an instrument of measurement, e.g., a pressure gauge or flow meter. Eight regulatory instruments were selected for the review: - Code of Federal Regulations (CFR) - Technical Specifications (TS) - Standard Review Plan (SRP) - NRC Regulatory Guides (RG) - American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC), Sections III and XI - Generic Safety Issues (GSI) - American Nuclear Society (ANS) Standards - Institute of Electrical and Electronics Engineers, Inc. (IEEE) Standards. Historically, all these regulatory instruments have been used for the design, construction, start-up and operation of Nuclear Power Plants. In this, their primary purpose has been to protect the health and safety of the general public. The intent of this review was to determine the degree of emphasis on the management of aging found in the instruments now in use. No attempt was made to take into account that approximately 50% of the Nuclear Power Plants now operating were licensed before 1975. Therefore, not all of the plants were licensed under the same set or edition of instruments noted above. The review of the applicable instruments was based on the technical issues related to aging. The descriptions included are the author's and do not represent NRC considerations for license renewal. The components on which the review focused were five light water reactor major safety-related components: reactor pressure vessels, steam generators, primary piping (reactor coolant piping), pressurizer vessel, and emergency diesel generators. (Cables, containment and basemat and selected pumps and valves will be investigated in FYs 1990 & 1991 and will be published as Volume 2.) The components were selected from the NPAR program document NUREG-1144, Nuclear Plant Aging Research Program Plan, that has identified a list of components of current interest and concern relative to the management of aging. The components are high priority, safety-related components that have been, in varying degrees, subject to aging problems. The focus of the review was on 26 NPAR-defined aging issues, including generic issues, e.g., examination, inspection and maintenance, embrittlement, corrosion, erosion, and thermal cycles; and component specific issues, e.g., steam generator tube specific - intergranular attack, fretting and denting, and emergency diesel generator specific - harsh and frequent testing. Each regulatory instrument was evaluated for each aging issue chosen for each component, e.g., for the RPV and the aging issue of corrosion, each instrument was evaluated for aging features that provide implied or explicit direction in the management of corrosion. The results of the review are contained in tables in appendixes for each of the major components. The principal conclusion is that aging management does exist in the safety-related regulatory instruments; however, the information is largely implied. The emphasis of the instruments appears to be on initial design, construction, qualification and start-up and actions to address aging problems that develop after the problem is found. Finally, it was also concluded that revisions should be made in the instruments to explicitly address aging. The major recommendation is that the existing body of regulatory instruments should directly address aging and the management of aging. The difficulties, however, with any revisions are acknowledged, and it is recommended that a project plan for the revision process be evaluated and defined. The planning should include evaluations of ongoing NRC aging research and industry aging-related research, e.g., Electric Power Research Institute and individual utilities, and the development of a realistic time frame for implementation of the revisions. It is also suggested that all regulatory instrument review information be installed in a computer data-based system for broader use by the NRC and others. A number of observations outside the scope of the review were developed during the analysis of the review by PNL staff. The principal observations are 1) evaluation of component replacement methods as an aging management procedure should be addressed in the regulatory instruments for augmentation of safety and cost effectiveness; 2) aging management could be enhanced by improvement of NDE methods and inspection tools; 3) the ASME BPVC, as the major contributor to design and construction and aging management, provides a valuable contribution to the NPP industry; however, improvements in the Code are needed to address component material deterioration, design that encourages and allows for repair, replacement, and improved inservice inspection, and improvements in the time cycle for revising the Code (ASME is currently addressing hard to backfit design problems in Section III and the problems of long time cycles in Section XI); and 4) a safe and well-maintained plant, i.e., a plant with excellent maintenance methods and procedures, is likely to be a plant that is successfully managing the aging of its components and systems. # 1.0 INTRODUCTION/PURPOSE This report comprises Volume 1 of a review of U.S. nuclear plant regulatory instruments to determine the extent that they contain information pertinent to managing the aging of safety-related components in nuclear power plants (NPPs). The review was conducted for the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, by the Pacific Northwest Laboratory^(a) under the NRC Nuclear Plant Aging Research (NPAR) Program (NRC 1987a). In conducting the review, the focus was on safety-related aging as it relates to selected safety-related components in Nuclear Power Plants (NPPs). NPAR has defined aging as "the cumulative degradation that occurs with the passage of time in a component, system of structure." Therefore, the essential elements of the review on which this report is based may be presented as follows: As used in this report, an "instrument" is a procedure or document as in an instrument of government, e.g., the Code of Federal Regulations. The terms regulatory instruments or instruments are used throughout this report and in this context are not to be confused with an instrument of measurement, e.g., a pressure gauge or flow meter. The regulatory instruments reviewed for safetyrelated information are listed in Section 2.2. Each is described in the body of this report. Historically, these safety-related regulatory instruments have been used as the
basis for the design, construction, start-up, equipment qualification, and operation of NPPs. Their primary purpose has been to protect the health and safety of the general public. This review was undertaken to determine the degree of emphasis, if any, regarding the inclusion of explicit requirements for the management of aging found in the instruments now in use. No attempt was made to take into account that approximately 50% of the NPPs now operating were licensed before 1975. Therefore, not all the plants were licensed under the same set or edition of instruments noted in Section 2.1. The review of the applicable instruments was based on the technical issues related to aging. The descriptions included are the author's and do not represent NRC considerations for license renewal. The components on which the review focused are the reactor pressure vessels; steam generators; primary piping (reactor coolant piping); pressurizer vessel, with special emphasis on pressurizer spray and surge lines and ⁽a) Operated for the U.S. Department of Energy by Battelle Memorial Institute. internals; and the emergency diesel generators. (Underway or planned are reviews for cables, containment and basemat and selected pumps and valves; this work will be published as Volume 2 in FY 1991). To determine whether the selected instruments contain significant aging safety-related information related to the five safety-related components, the review concentrated on NPAR defined safety-related aging issues. A complete list of the 26 identified aging issues is found in Section 2.3. These aging issues include examination, inspection and maintenance, embrittlement, corrosion, erosion, and thermal cycles; and component--specific issues, e.g., steam generator tube specific--denting, fretting and crevice intergranular attack, and emergency diesel generator specific--harsh and frequent testing. Each aging issue is defined in Appendix I.(a) The results of the review on which this report is based are contained in tables in Appendixes II^(a) through VI entitled "Regulatory Instrument Reviews": Appendix II for Reactor Pressure Vessels; Appendix III for Steam Generators; Appendix IV for Primary Piping (Reactor Coolant Piping); Appendix V for Pressurizer Internals; and Appendix VI for Emergency Diesel Generators. Section 2.0, "Selection of Instruments, Components and Issues, and Methodology," describes the regulatory instruments, the selection of components, the rationale for the aging issues, the instrument review criteria, and the review methodology. Also included in Section 2.0 are two typical examples of how to use the tabular data in Appendixes II through VI. Section 3.0, "Discussion," provides background information on the regulatory instruments versus aging management and the aging issues. Specific examples of aging management guidance, either direct or indirect, are provided for each instrument. The "Conclusions and Recommendations," "Suggested Future Regulatory Instrument Review Activities," and "Observations Outside the Scope of the Review" are found, respectively, in Sections 4.0, 5.0 and 6.0 of this report. ⁽a) The regulatory instruments, e.g., Code of Federal Regulations and American Society of Mechanical Engineers Code, frequently make use of the Appendix A, B, etc., within their text; therefore, the appendixes attached to this report will be designated in Roman numerals to distinguish them from those found in the instruments. # 2.0 <u>SELECTION OF INSTRUMENTS, COMPONENTS AND ISSUES, AND METHODOLOGY</u> This section describes regulatory instruments, the selection of the major components, the rationale for selection of the aging issues, and the development of the review criteria and methodology. Examples of how to use the review information contained in appendixes are included. #### 2.1 REGULATORY INSTRUMENTS REVIEWED The following regulatory instruments were reviewed for this report. While not necessarily all inclusive, they are the most important and applicable to the pressure boundary aspects of the current components. IEEE Standards were added to the list to account for the electrical aspects of the emergency diesel generators and pressurizer. IEEE Standards were not considered in the reviews of RPV, steam generator (SG), or the primary piping. PNL staff with experience in the aging issues and familiarity with the applicable regulatory instrument performed the reviews and interpreted the instrument text. - Standard Review Plan (SRP) - Code of Federal Regulations (CFR) - NRC Regulatory Guides (RG) - American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC), Sections III and XI - Generic Safety Issues (GSI) - Technical Specifications (TS) - Institute of Electrical and Electronics Engineers, Inc. (IEEE) Standards - American Nuclear Society (ANS) Standards. Each instrument is described below. • Standard Review Plan. The SRP is published by the NRC and provides guidance for the review of Preliminary Safety Analysis Reports (SAR) and the Final Safety Analysis Reports (FSAR) for plant design and operations. The SRP contains 18 chapters and covers all facets of NPP operations, including plant descriptions, design and construction, safety features, instrumentation, electrical power, radiation protection, waste management, quality assurance, and human factors engineering. The SRP also presents specific Branch Technical Positions (BTPs) that are developed and published by branches within the NRC, e.g., BTP ISCB 19 by the Information Security Branch found in SRP Chapter 7, Instrumentation and Controls. - <u>Code of Federal Regulations</u>. These regulations codify general and permanent rules published in the U.S. Federal Register by the Executive departments and agencies of the U.S. Federal Government. With reference to this report, these codes establish the rules for design, construction licensing and operation of commercial NPPs. For the NRC, a federal agency, the most significant CFR relating to commercial reactors is Title 10, Chapter 1, Part 50, Domestic Licensing of Production and Utilization Facilities. Part 50 includes important appendixes, such as the General Design Criteria requirements, specific material requirements for reactor vessels, emergency planning, and quality assurance criteria for NPPs. - Regulatory Guides. These guides are published by the NRC in 10 broad divisions, including Division 1, Power Reactors. The guides are available to the public and NPP licensees. They provide general guidance to applicants and describe methods acceptable to the NRC staff, to implement specific parts of the Commission's regulations and, to delineate evaluation techniques used by NRC staff for specific problems and postulated accidents. The RGs often explain and detail acceptable methods for the rules found in the CFRs. - American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Sections III and XI. The ASME Code establishes the rules of safety governing design, construction, operation and testing of NPP components and systems. Section III covers a broad range of components and systems including, pressure vessels, piping, pumps, valves, supports and core internals. Section XI provides rules for inservice inspection of components and systems. Section XI constitutes the requirements of examinations, testing and inspection to maintain an NPP in a safe and expeditions manner. Section XI is applicable when the requirements of the Construction Code, e.g., Section III, have been satisfied. The ASME Code Editions, Addenda and Code Cases used by the owners of NPPs are subject to acceptance by the NRC. The ASME codes are frequently referenced in the CFRs. The ASME Maintenance and Operation (O&M) committees provide an important function through the testing of pumps, valves and snubbers. - Generic Safety Issues. GSIs are published by NRC to identify safety issues generic to NPPs. The GSIs can cover a wide variety of subjects; however, for the purposes of this review, the GSIs used are those that are predominately concerned with material degradation and operations that cause degradation of plant components. When a solution to the generic issue is found, the usual result is an NRC Generic Letter or an NRC NUREG report that provides an industry wide dissemination of the solution. - <u>Technical Specifications</u>. Technical Specifications are NPP mandatory operational specifications that provide instructions for limiting conditions and surveillance requirements for plant operations. License applications for authority to operate an NPP are required to supply Technical Specifications as enumerated in 10 CFR 50, Section 50.36. - Institute of Electrical and Electronic Engineers Standards. The IEEE Standards present criteria and requirements for electrical systems that are specifically related to providing protection to the health and safety of the public. The standards included in this review are principally those prepared by the IEEE Nuclear Power Engineering Committee. The IEEE Standards, through the Equipment Qualification (EQ) standards define "qualified life" and provide guidance for requalification or replacement of components when their qualified life is reached. The IEEE standards are not mandatory and use of the standards is wholly voluntary. Use of the standards, as acceptable practice, are subject to the approval of the regulatory agency, i.e., the NRC. Specific IEEE standards are frequently called out and/or qualified in the Regulatory Position Section of the RGs as acceptable to NRC staff. - American Nuclear Society Standards. The ANS standards are agreements among designers, engineers, governmental regulatory agencies, manufacturers, and nuclear scientists. The standards are developed to provide current practices on various subjects that affect NPPs. Among the subjects are criteria for earthquake instrumentation, various safety guides, selection and training of personnel, QA, security for NPPs, and
auxiliary feedwater system for PWRs. The ANS standards are frequently published as American National Standards with the approval of the American National Standards Institute (ANSI). ANS standards are guides for prospective use and are not mandatory; the designers are not restricted to the ANS standards and may propose alternate criteria to provide adequate safety. These instruments are listed in column 2 of the component reviews Appendixes II through VI. #### 2.2 MAJOR COMPONENTS The following components were chosen for the current review. They were selected from the major LWR plant elements of current interest in the NPAR program, as found in Table 5.3 of the NPAR program document NUREG-1144, Nuclear Plant Aging Research Program Plan. These selected components are recognized by the NRC as safety-related components that historically, in varying degrees, are subject to aging problems. Finally, the selected components provide a good mix for the review by covering the three major design disciplines, i.e., structural, mechanical and electrical. The components are listed in Column 1 of Appendix II through VI. - reactor pressure vessel - steam generator - primary piping (reactor coolant piping) - pressurizer - emergency diesel generator. ### 2.3 AGING ISSUES Listed below is a list of the component aging issues used in the instrument review. - corrosion - corrosion/erosion - crack initiation and flaw propagation - creep/swelling - element burnout(s) - erosion - examination, inspection and maintenance and repair - excessive/harsh testing - fatigue - fracture toughness - intergranular stress corrosion cracking - irradiation embrittlement - low-flux long-time irradiation of vessel internals and supports - seismic failure/damage - specific environmental factors, e.g., moisture, oxidation, chemicals, oils, and dust. - stress corrosion - stud failure - thermal cycles - thermal embrittlement - thermally induced bending - thermally induced mechanical wear - transient thermal loads - tube specific denting, fretting and crevice corrosion - vibration - wear - weldments specific to dissimilar metals of safe ends. For illustrative purposes, some of the aging issues of the instrument review are shown below. For the reactor pressure vessel (RPV), - IRRADIATION EMBRITTLEMENT degradation of the structural integrity of vessel materials due to the consequences of long-term exposure to high radiation levels that induce changes in the vessel's material properties. - FATIGUE degradation associated with cyclic loading, transient cycles, and thermal and pressure cycles. For the steam generator (SG), - CORROSION degradation associated with the deterioration of material surfaces, chiefly, through chemical actions. The chemical reaction is influenced by environment of the material or component. - TUBE SPECIFIC (DENTING, FRETTING AND CREVICE CORROSION) aging issues associated with the generator tubes include denting caused by the crevice corrosion of the tube support plate and tube sheet material; fretting is caused by the wear action between the tubes, tube supports and antivibration bars; crevice corrosion due to localized stagnant solutions in lap joints, holes, welding surfaces, etc. All specific aging issues were derived from the general guidance found in NUREG-1144, Rev. 1., Section 2.1 (NRC 1987a). Typical degradation mechanisms are neutron embrittlement, fatigue, erosion, corrosion, oxidation, thermal embrittlement, and chemical reactions. Aging is also induced by stressors, e.g., service wear, testing, improper installation, and application and maintenance. Each aging issue was considered, and those believed by PNL staff to be specific to the components were chosen for the review. The aging issues for each component were then grouped into principal categories that define the mechanics or phenomena of the aging processes for the component. For a typical example see Appendix III, page III.9, item (50), Dynamic effects, that includes vibration, thermal cycles and erosion. Aging issues are not necessarily specific or all inclusive for each component nor do they manifest themselves in the same way for each component. For example, neutron embrittlement is not typical to all components. Radiation is unique to the RPV and is not generally regarded as a problem in the other review components. On the other hand, the RPV as a pressure retaining component has many safety-related degradation problems that are common to all vessels and piping systems. The aging issues for each component are found in column 3 of the review Appendixes II through VI. #### 2.4 REVIEW CRITERIA The review criteria chosen to examine the regulatory instruments answer three questions: 1) Do the instruments address aging? 2) If so, in what form is the aging addressed? For example is aging management implied or explicit and is the guidance or direction adequate or incomplete for the aging issue? 3) What are the current initiatives that would change the instruments to address aging and life extension? The review criteria as they appear in the component review sections are noted below with a brief definition: 1. Aging Features: What parts of the instrument, if any, identify the management of component aging. Are aging issues addressed by the instrument? Is the information implied or explicitly expressed? 2. Life Extension Features: Does the instrument address life extension or component replacement needs? 3. Current Initiatives: Is work currently underway to update or change the instrument to include aging features or life extension features? What, if any, is the status of special working groups, of technical committees, or of on-going research that could lead to the revision of the instruments to include these features? 4. Aging Needs: What changes or revisions generally are needed in the instrument to address aging issues? 5. Life Extension Needs: Does the instrument require further investigation/ research of the aging issue to accommodate life extension? How could the instrument be used or modified to meet life extension needs? The review criteria are listed in columns 4 through 8 on each page of the component review sections, Appendixes II through VI. #### 2.5 REVIEW METHODOLOGY Each regulatory instrument was examined for data for each designated major component's aging issues. Thus the regulatory instrument review for a component with five aging issues required five reviews for each instrument. The review relative to the components was carried out in the generic sense; that is, no distinction was made for the different configurations or manufacturers of SGs or for RPVs, or for PWRs versus BWRs. However, the review does account for the regulatory documents that specifically address a design configuration or type of reactor. The general approach was to review the instrument for reference to the aging issues or for a specific reference to the major components by name or system. Typically, minimal specific component or aging issues references, by name, are found in the regulatory instruments. The principal reference is to systems, such as the reactor coolant system or reactor containment. However, there are some exceptions; Appendix G, in 10 CFR 50, is specific for fracture toughness requirements and Appendix H is specific for surveillance requirements to monitor changes in fracture toughness. If the instrument revealed any relationship or potential relationship to the aging issue, further analysis was conducted to determine the explicit and/or implied relationship. The related information, if found, was analyzed by using the review criteria of Section 2.4. Applicable results of the five review criteria analysis were entered in columns 4 through 8 for each of the aging issues designated for each component (see Appendix II through VI). Special attention was given to the current initiatives criteria, and a number of on-going actions were noted throughout the review. Criteria 1, Aging Feature, is the key criteria of this review and provides the bulk of the information found in the regulatory instruments and indeed provides the emphasis to examine the instrument in more detail. The larger instruments, e.g., the SRP and ASME code, were investigated by subsections, chapters, etc., and those sections that were completely unrelated to the aging issues were ignored for detailed analysis. The smaller instruments, e.g, RGs and IEEE standards, were investigated as a whole. Many of the instruments were eliminated by title or subject or objectively determined not to be related to the aging issue(s). # 2.6 REVIEW EXAMPLES Two examples from the PNL regulatory instrument review are shown below. Example 1 examines the NRC RGs for the issue of EXAMINATION, INSPECTION AND MAINTENANCE AND REPAIR as they apply to the RPVs. Example 2 examines the GSIs for the issue of IRRADIATION EMBRITTLEMENT as applied to the RPVs. Each example begins with a question, followed by an answer. #### Example 1 Do the RGs refer to the aging issue of EXAMINATION, INSPECTION AND MAINTENANCE AND REPAIR with respect to RPVs? • On page II.5 of Appendix II, five entries are shown for the RGs items (15) through (19). For example, item (15), RG 1.150, indicates that this RG does have an Aging Feature (Column 4), "UT of RPV welds," discusses evaluation of prior UT examinations for determination of crack growth rates, and Life Extension Features (Column 5), "Inservice inspection (ISI)," discusses continued structural integrity of reactor through reliable flaw detection vessels. No Current Initiatives (Column 6) were found; the entry refers to Note 1, page II.3 which indicates a need for further study. Aging Needs and Life Extension Needs (Columns 7 and 8) were shown to be suggestions for improved flaw detection and assessment. The comments (Column 9) note that cracks may propagate from cladding into the steel (shell) in the RPV and raises the question that 100% UT may be required for BWR to assess under cladding cracks. #
Example 2 Do the GSIs refer to the aging issue of FRACTURE TOUGHNESS with respect to RPVs? • As shown on page II.10 of Appendix II, three entries, items (56) through (58), were made for the GSI relative to the noted issue. The first entry, Item (56), indicates that GSI A-11 (Column 3) does have an Aging Feature (Column 4). Column 4 notes that "As plants accumulate more and more service time, neutron irradiation reduces the material fracture toughness and initial margins of safety." The GSI does not discuss Life Extension Features (Column 5) and it has no Current Initiatives (Column 6). For the Aging Needs (Column 7) and Life Extension Needs (Column 8), an entry is made indicating that further analysis is needed to resolve these review criteria. The comment (Column 9) indicates the priority for this issue has been resolved with the issuance of NUREG-0744 (NRC 1982). #### 3.0 DISCUSSION Although the review data on regulatory instruments developed in this study, as presented in the Appendixes II through VI for each component, appear to be comprehensive, the reader is cautioned that the magnitude of the literature, research time, and funding levels did not permit an exhaustive study of all the text, references and background documentation on each instrument. The review is, however, a good overview of the degree to which aging guidance is found in the regulatory instruments. The following sections provide discussion and insights as to the effectiveness of the safety regulations to provide guidance for the management of aging. #### 3.1 REGULATORY INSTRUMENTS AND AGING MANAGEMENT The PNL review revealed that, in effect, the regulatory instruments do contain information that does relate either directly or indirectly to current safety-related concerns and aging management. A strong corollary exists between safety and aging management, i.e., it is implied that a safe plant is more likely to be well maintained and more effectively monitored for problems and degradation. Yet, generally speaking, the instrument review does not reveal explicit requirements for aging and life extension needs or features. The majority of related information, i.e., the aging features of the instruments, is interpreted by PNL staff to be implied guidance. The implied guidance or, in some cases mandatory guidance, i.e., the technical specifications (TSs), have been useful in the management of aging. Simply stated, the safety-oriented regulatory instruments used for NPP have indirectly managed aging through safety-oriented design and safe operations. # 3.2 REGULATORY INSTRUMENTS AND THE AGING ISSUES This section presents the key objective of the review, which is contained in the question, "Do the regulatory instruments address aging issues?" In this section, a general assessment statement is provided for each instrument relative to the aging issues. Each issue is listed in Section 2.3 and defined in the glossary of Appendix I. Examples of specific features in each regulatory instrument that address aging issues are included with a typical degree of depth on how the instrument addresses an issue. (In this section, the instruments are discussed in the order that they appear in the review data, Appendix II through VI.) #### 3.2.1 Code of Federal Regulations The CFRs are the principal base for all the regulations that mandate the design, construction, inspection and operation of the components chosen in this review. Appendix A, General Design Criteria for Nuclear Power Plants (GDC), 10 CFR 50, provides the largest measure of implied aging management. The GDC of Appendix A coupled with Section 50.55a, Codes and Standards, provides the broad base design and inspection requirements. The CFRs tend to be generic in description because they often address broad plant categories such as the reactor coolant pressure boundary. In this review, four of the components considered are within the reactor coolant pressure boundary. Consequently, the Criterion needs given in 10 CFR 50, Appendix A, implies aging management even though the component is not mentioned in specific description. In general, the review components, with the exception of the RPV, as referenced in 10 CFR 50, Appendix G and H, are not discussed in the CFRs. Aging and life extension are not explicitly cited in the text. NPAR aging, as defined in the introduction, does not appear. The implied aging features as found in the review, are based principally on the assumption that a reactor designed, constructed, tested and operated within the rules of 10 CFR 50 will provide the licensee a facility that can be managed for aging. Aging does appear in 10 CFR Part 50, §50.49, "Environmental qualification of electric equipment important to safety for nuclear power plants," (e), (5). This aging is in reference to equipment qualified by test and preconditioned by natural or accelerated aging. Also, in 10 CFR, Part 50, Section 50.109, Backfitting, c, (8), states that "the potential impact of difference in facility type, design or age on the relevancy and practicality of the proposed backfit," will be considered when addressing backfit requirements. Yet in these examples, the "aging" and "age" are not used in the same context as NPAR defined aging. The following are typical examples of the more specific requirements of CFRs; while not using the terms aging and life extension, these examples may be regarded as aging management guidance: 10 CFR 50, Appendix A. General Design Criteria for Nuclear Power Plants. Criterion 51, states that "The reactor containment boundary shall be designed with sufficient margin to assure that under operating, maintenance, testing, and postulated accident conditions (1) its ferritic materials behave in a nonbrittle manner and (2) the probability of rapidly propagating fracture is minimized. The design shall reflect consideration of service temperatures and other conditions of the containment boundary material during operation, maintenance, testing, and postulated accident conditions, and the uncertainties in determining (1) material properties, (2) residual, steady state, and transient stresses, and (3) size of flaws." Aging and life extension are not specifically used in the above quote; however, the criterion does address a number of aging issues identified in this review including, irradiation and thermal embrittlement, fracture toughness, fatique, thermal cycles, crack formation and growth, testing and maintenance and seismic failure/damage. The criterion terminology of "under operating, maintenance, testing, and postulated accident conditions" encompasses all plant operating phases and strongly advocates a design that assures material reliability throughout the plant's operating period. • Appendix A, Criterion 2, address the aging issue of seismic failure/damage. The criterion states that "structures, systems and components important to safety shall be designed to withstand the effects of natural phenomena such as earthquakes, tornadoes, hurricanes, floods, tsunami, and seiches without loss of capability to perform their safety functions." The design is subject to the most severe (historically) known natural occurrence, to the combinations of normal conditions and accident conditions and natural phenomena and, to the importance of the safety function performed. #### 3.2.2 <u>Technical Specifications</u> The TSs are mandatory requirements that provide the safety limits, the limiting safety systems settings, the limiting conditions for operations and the surveillance requirements for NPPs. TSs should not be confused with or called "guides" because they provide specific mandatory rules for operation of a particular plant. They are required for NPP operations by the rules of the CFRs and are enforced for the life of the plant. TSs may provide aging management through enforcement of limits that are set at acceptable levels or procedures which will control, reduce, mitigate, detect or preclude aging degradation. The TSs, for example, require that safety-related equipment be in acceptable operable condition or, if not repaired within a specific time frame, the plant will be shut down. TSs also require records to be maintained for operating cycles, e.g., cyclic loading/P/T cycles. These records can provide documentation for material life or life extension documentation. The TSs reference the ASME code, Section XI, for inservice inspection. The following are examples of specific TS applications that contain implied aging management. - Technical specifications require inspection for "wall penetrations" or other modes of SG tube wall thinning. This requirement addresses the aging issue of erosion. The present inspection technique is eddy current for a fraction of the SG tubes on a 12-to-24 month basis. - Thermal pressure cycles are recorded during thermal/pressure reactor coolant heat-up or cool-down on the primary side only. These cycles are useful for aging management by providing records for evaluation of the reactor coolant system P/T and PTS history. - TSs require primary reactor coolant system (RCS) chemistry control and the retention of water analyses and associated records. This information is useful in determining the water chemistry history of RCS and is useful in the management of aging and life extension. - The TSs require inspection of component and equipment mechanical restraints, snubbers, on a periodic basis. Failure of visual or functional tests require maintenance or replacement. #### 3.2.3 Standard Review Plan The SRP by definition (see Section 2.1) provides a plan "for the review of safety analysis reports (SARs) for nuclear power plants." The SRP consists of eighteen chapters, ranging from site description of the plant and design of structures and components to human factors engineering. The principal concern of the SRP is safety, e.g., does the SRP review of the FSAR indicate that a plant can be started and operated safely and, if a failure occurs, can the plant be
shut down in a safe manner? The SRP, typically, wants to know whether the plant design/procedures comply with applicable CFRs, such as 10 CFR 50.55a, inservice inspection. Many of the implied aging features in the SRP occur because of references to the ASME Code, 10 CFR 50, General Design Criteria and other standards. Specific examples of aging related guidance in the SRP are as follows: - SRP 5.2.3, Reactor Coolant Pressure Boundary Materials, discusses the review of suitable materials and review of procedures for manufacturing and welding. The SRP has implied aging management by determining whether the plant design has used the right materials, i.e., correct materials will or should stand up to the plant operation and environment. - SRP 3.9.2 has an aging feature for the dynamic effects of vibrations through the review of the structural and functional integrity of the piping systems under vibratory loads. #### 3.2.4 Regulatory Guides The RGs are principally issued to describe methods acceptable to NRC staff and to provide guidance to applicants in the use of the 10 CFR 50 regulations, especially as applied to the GDC. The "Introduction" of a RG will frequently refer to the importance of safety and safety systems; "aging," on-the-other-hand, is not part of the text. Yet some of the RGs do discuss the aging issues. Information on corrosion, vibration, progressive tube deterioration, and secondary water chemistry maintenance, e.g., may be found in the "Discussion" section of RG 1.83; however, the purpose of RG 1.83 is for guidance in the performance of inservice inspections (ISI) for steam generators. Some individual RGs may be specific to a single component or part of a component, and these individual RGs tend to support the direct management of aging, even though the intent of an RG is to promote safety. Examples of aging management guidance in RGs are shown below: Degradation of steam generator tubes has been identified as a problem because of mechanical damage or progressive deterioration caused by inadequate design, manufacturing errors, or chemical imbalance. Tube problems are caused by a number of mechanisms including, IGSCC, IGA, pitting, denting, fatigue, wastage and erosion/corrosion. Management of the tube degradation is assisted by RG 1.121, "Bases for Plugging Degraded PWR Steam Generator Tubes." The guide describes methods acceptable to the NRC staff for establishing limiting safe conditions of SG tube degradation. Conditions beyond the limiting safe conditions should result in removal from service by plugging (welding each end) of the tubes. Regulatory Guide 1.85 allows the use of approved ASME "Code Cases," thus providing a mechanism to use current repair and replacement techniques within the jurisdiction of the code. These alternate methods within the jurisdiction of the code may provide improvements in repairs and materials that could enhance aging management and life extension. #### 3.2.5 ASME Boiler and Pressure Vessel The ASME Boiler and Pressure Vessel Code, especially Section III and Section XI, are used for the design and construction of NPPs. Section XI, inservice inspection remains in effect throughout the life of a plant and provides inspection criteria, intervals, and acceptable methods. Sections of the ASME code are mandated in 10 CFR 50, Section §50.55a, Codes and Standards, which specifically notes that "Structures, systems, and components of boiling water and pressurized water-cooled nuclear power plants must meet the requirements of the ASME Boiler and Pressure Vessel Code." Manufacturers and designers are expected to use sound engineering practice and judgment within the rules of the Code. The expressed purpose of the Code is to provide protection of life and property and a margin for deterioration in service for a reasonably long, safe period of usefulness. The review, however, reveals that material deterioration is not fully addressed and needs attention. The ASME Code does, in general, address "life of plant" issues and, in some cases, it is very specific, e.g., corrosion allowances for vessel and pipe thickness. The Code also provides for use of current technology for repairs/ replacement and materials by the use of approved Code Cases. The Code is a living document which is currently revised and published every three years, e.g., the latest was published July 1, 1989. Addenda are issued in December of the years between major publications. Code interpretations are usually provided twice a year as an update service to the various sections. The following are examples of the Code that are related to aging-management issues: - A strong implied aging features exist in Section III, Class I, piping. If corrosion or erosion is expected, the piping thickness, shall be increased over the design thickness to be consistent with the specified design life. - The ASME Code recognizes that problems exist and, consequently, the code is under continuous revision to effect improvements and changes. For example, a Section XI, Special Working Group (SWG), has implemented revisions to IWA 2400 which will delete the current 40-year operating limit of nuclear plants. A SWG has been set up to consider the development of a new Section XI, Article IWX-8000, called Requalification of Fatigue Life. A Section III, SWG is also reviewing fatigue curves to determine revisions to accommodate operation beyond the 40 years. A new Subsection IWT for Section XI is now under consideration by ASME; the subsection addresses the aging-related issue of erosion-corrosion. #### 3.2.6 Generic Safety Issues Generic Safety Issues, as their name implies, are concerned with safety issues common to all NPPs or to types of LWRs, PWRs or BWRs. The GSIs do not explicitly reference aging management. The GSIs are, however, concerned with many of the aging issues, and the reader will note that, in the reviews, Appendix II through VI, the aging issues for each component are frequently the subject of a GSI, including cracking and degradation of bolts, mitigation of steam generator rupture/degradation, SCC, fracture toughness, corrosion of interior metal surfaces, control of overfilling transients, pressurized thermal shock, and neutron irradiation of RPV welds. Thus the GSIs identify many aging issues as problems, and this identification process does assist in the management of aging. When a solution to the problem is determined, management of the problem, i.e., the aging issue, is addressed by the NRC usually through Generic Letters, NUREGs and the SRP/BTP. Examples of applicable aging issue subjects found in GSIs are listed below. - GSI A-11 notes that as plants accumulate increasing service time that neutron irradiation reduces the fracture toughness and the initial margins of safety. This issue was thought to have been resolved by NUREG-0744 (NRC-1982); however, a need to monitor and analyze trends of nil-ductility temperature exists; that is, what are the impacts of extended life on brittleness? A related GSI is USI A-49. This issue is concerned with irradiation of reactor vessel weld and plate materials and the reduction of fracture toughness in these materials. - GSI 29 addresses cracking and degradation of bolts and studs from stress corrosion, fatigue, and boric acid corrosion. - GSI A-15 addresses the aging issue of corrosion activated by neutron flux. Operation of LWRs result in slow corrosion of interior metal surfaces of the primary coolant system. - GSI A-12 addressed the problems of lamellar tearing and low fracture toughness in SG and reactor pump supports. This problem was also addressed in NUREG-0577 (NRC-1979), <u>Potential for Gas Fracture Toughness and Lamellar Tearing on PWR Steam Generator and Reactor Coolant Pump Supports</u>. - GSI A-3 and A-4 reported the SG tubing degradation due to wastage and SCC in Westinghouse SG (A-3) and Combustion Engineering SG (A-4). # 3.2.7 Institute of Electrical and Electronic Engineers Standards Many of the IEEE standards provide qualification/acceptance criteria; thus they tend to dictate an aging management perspective through qualification testing. The IEEE standards cover a multiplicity of subjects related to electrical and electronic systems. Numerous IEEE standards are dedicated specifically to the nuclear industry's Class IE equipment, and it is these specific standards that this review investigated. The IEEE standards are frequently referenced in the regulatory instruments, such as the SRP. The regulatory basis for the use of the IEEE standards is found in the CFRs and the RGs. The NRC RGs frequently, in the "Regulatory Position" section, list the IEEE standards that are acceptable (with exceptions) to the NRC staff for satisfying the Commission's regulatory requirements. The standards are generally not acceptable in whole and the "Regulatory Position" will state the exceptions or other requirements. The majority of IEEE standards are jointly approved by the ANSI and may be designated as ANSI/IEEE and published as an American National Standard. The following are some specific examples of the explicit and implied aging management found in the IEEE standards: - The IEEE standards require that an assessment of the effects of aging must be addressed when considering the ability of equipment to perform safety functions. Types of aging that must be addressed include vibration, wear, and natural and environmental conditions. Standard 323 recognizes the need for aging management and defines the steps to address aging. This standard defines aging and explicitly address the subject. IEEE 323 defines aging as "the effect of operational, environmental, and system conditions on equipment during a period of time up to, but not including design basis events, or the process of simulating these events." - IEEE standards recommend establishment of procedural practices to obtain the qualifying (test) data. The data is required to qualify that the equipment will meet its performance
requirements following one safe shutdown earthquake (SSE). Included are tests for vibrational aging, seismic aging and normal operating loads. IEEE 323 defines qualification as "the generation and maintenance of evidence to ensure that the equipment will operate on demand to meet the system performance requirements." - IEEE 934 standard addresses an aging perspective by providing criteria for the use of replacement parts for both construction and operations. The standard requires acceptance testing of parts for wear, fatigue, defects and insulation breakdown prior to release to service. Failure of parts provides aging management by addressing the aging issues, e.g., wear and fatigue and insulation breakdown. #### 3.2.8 American Nuclear Society Standards The ANS prepares and publishes standards for the design and operation of NPPs. The standards are usually published as joint American National Standards Institute (ANSI) and ANS standards. The ANSI/ANS standards tend to be more safety specific than are the other instruments included in this review. The ANS standards do not, however, explicitly mention aging or aging management. They were included in the review because they do address a number of the aging issues for various components. Some examples of the ANS standards that can be related to implied aging are as follows: - ANS-3.2 provides requirements and recommendations for administrative control, including written procedures for activities associated with NPP operation to help ensure that operations are carried out without undue risk to health and safety of the public. Among the activities are aging activities of inspection, testing and maintenance and repair. - ANS-58.11 provides design criteria for achieving and maintaining cold shutdown conditions from a hot standby or post accident condition. This standard is explicit to safety; however, aging management of pressure and temperature cycles are addressed and adverse conditions are modulated by the suggested design criteria that confront nuclear safety issues of reactivity control, RCS integrity, P/T control, heat removal, and inventory control. # 3.2.9 General Correlation of Implied Aging While the above examples for all of the regulatory instruments and indeed the instrument review itself tend to correlate with the "implied" aging scenario, most of the instruments were developed to emphasize plant design and construction, plant pre-operational stages, and SARs. The instruments include concepts related to pertinent aging issues, but they were not written to solve aging problems or manage those issues. However, it is also true that some of the instruments apply throughout the life of the plant. The SARs are effective for the life of the plant and receive annual updates. Codes and standards, such as IEEE standards, that are noted in the SARs or other correspondence/agreements become a life-of-plant commitment. The Code of Federal Regulations apply throughout the life of the plant. The TSs apply throughout the length of the license and the ASME B&PV Code, Section XI, applies as long as the plant operates. In addition, the NRC Regulatory Guides apply and may become part of the license commitment if the utility commits to the guidance of the RG. GSI resolutions can be implemented throughout the life of the NPPs and become part of the licensing base. # 4.0 CONCLUSIONS AND RECOMMENDATIONS The following conclusions and recommendations were derived from the work completed to date on the five components selected for the first part, Volume 1, of the regulatory instrument review. # 4.1 **CONCLUSIONS** The following are the central conclusions derived from the review: - The instruments included in this review, with minor exceptions, do not explicitly use aging or life extension terminology. The instruments, by definition, are dedicated to safety and have the ultimate purpose to establish and maintain safe operation of NPPs. Yet aging management does exist in them because safety-related design, construction and operation are consistent with the principles needed to provide aging management and life extension. This is to say, the technology associated with providing safety is congruous with technology required for management of aging. - The emphasis in the regulatory instruments is on design, construction, equipment qualification and on the final safety review that will provide a safe plant at start-up. Specific actions to address aging and aging management, on the other hand, are generally initiated after a plant is placed in service. - Revisions should be made to the instruments that explicitly address aging, see 4.2, Recommendations. Revisions will be difficult to achieve. Revisions of an instrument by instrument basis is the most practical approach at this time. #### 4.2 RECOMMENDATIONS The following are the primary recommendations identified as a result of the review: • The content of the regulatory instruments need to be changed to explicitly address the consequences of component, systems or structures (CSS) aging rates. Aging (degradation) rates are often not explicitly addressed in the body of the instruments and a key principal in the management of aging is understanding the rate of degradation over time. Emphasis on CSS aging rates, in the body of regulatory instruments, will serve five purposes: 1) establish an explicit need in NPP functional design criteria; 2) accelerate the improvement in trending and the methods of obtaining trending data; 3) accelerate the upgrading of applicable codes and standards; 4) accelerate the improvement in NDE tools and methods; and 5) improve CSS design and improve the design margins or the factors of safety needed. - Project planning for revisions to the instruments will be a key feature in the success of any revision strategy and should address, as a minimum, the following questions: - 1. Should the individual instruments be changed or should a new comprehensive regulatory guide be prepared to address the aging management issue? - 2. What is the status of current industrial aging-related activities, such as EPRI research efforts, Nuclear Management and Resource Council (NUMARC) and Nuclear Plant Life Extension Committee (NUPLEX) reports, industry sponsored working group guidelines, documents and standards? (All sound solutions to aging problems should be included in the revision process.) - 3. What is the status of existing national society codes and standards relative to <u>aging initiatives</u>? This status check should include codes and/or standards of societies such as ASME, ANS, ANSI, National Fire Code (NFC), American Society of Testing and Materials (ASTM), American Concrete Institute (ACI), IEEE, and PLEX. (ASME has been given the overall PLEX responsibility for all standards groups.) - 4. What is a realistic time frame for implementation of the revisions? ### 5.0 SUGGESTED FUTURE REGULATORY INSTRUMENT REVIEW ACTIVITIES The following are activities that should be considered for future work associated with this review task. # 5.1 <u>CONTINUATION OF THE GUIDE TO REGULATORY INSTRUMENTS</u> During the course of this instrument review, a Technical Evaluation Report containing the results of the review on LWR reactor pressure vessels was published: PNL-6848, <u>Guide to Regulatory Instruments for LWR Reactor Pressure Vessels: Aging and License Renewal Considerations</u>. The results contained in PNL-6848 are included in this report as Appendix II. It is suggested that the results of all the reviews, Appendix III, IV, and V and the reviews of FY 1990, be added to PNL-6848. #### 5.2 COMPUTER DATA BASE FOR THE REGULATORY INSTRUMENT REVIEW It is suggested that the basic data from the Regulatory Instrument Review, Appendixes II through VI, be installed on a computer data-base system to make the information available for broader use. Information collected on other components should be added to the data base as it becomes available. # 6.0 OBSERVATIONS OUTSIDE THE SCOPE OF THE REVIEW The following are observations and recommendations that arose out of the review results that are not directly related to the objectives of the instrument review. They are based on the analysis of the instruments used to conduct the review, mainly on a close review of the comments included in the tables in Appendixes II through VI. For final validation, these observations should be subject to further study. #### COMPONENT REPLACEMENT In general the regulatory instruments reviewed do not address component replacement as an aging management tool. Many components have design features for replacement and have been replaced well within the 40-year license period. Components such as, pumps, valves, motors, electrical and instrument controls fall within this category and are routinely replaced. Some components, notably the SG and primary piping, were never intended to be replaced; yet, a number of these replacements have been made within the 40-year license period. Some replacement direction is provided through components under TS surveillance and replacements will be made if repairs cannot be successfully performed. Also, electrical qualified (EQ) components within containment will be replaced according to their lifetime qualification testing. Thus, the scenario is that replacements are taking place because of design and necessity and within the jurisdiction of regulations/codes. The emphasis of the body of instruments, however, does not address replacement as a management tool. It is concluded that the instruments revisions should emphasize replacement methods by encouraging design for routine replacement and by encouraging improvement in CSS life assessment methods, including improved material degradation trends and component life predictions. A factor in replacement methods is Diminishing Manufacturing Sources (DMS) or the increased unavailability of parts and components from manufacturers. DMS results in an increased vertical unsupportability of aging
components and subsystems. DMS also results in an increase in maintenance costs. The NRC has identified DMS problems (NRC 1986) within the nuclear industry. These problems have resulted in down time and the necessity to operate in a degraded mode because of unavailable replacement parts. DMS has been identified by the Department of Defense (DOD) as a serious and prevalent problem. The DOD has, however, taken aggressive action to counteract the DMS phenomenon, e.g., using performance specifications rather than plant specifications, using improved long range forecasting and using improved procurement techniques. It is suggested that improved component NPP replacement methods should recognize the DMS problem and actively pursue solutions similar to the DOD strategy. #### IMPROVED ISI METHODS AND TOOLS The regulatory instrument review revealed that the management of aging could be enhanced with improved ISI tools, e.g., Appendix II, page II.13, item (83) of this review for the reactor pressure vessels, with reference to RG 1.150, states that improved flaw detection for the distribution of microflaws is needed. Also Appendix III, page III.13, item 92, addresses the aging issue, embrittlement, for the steam generator, with reference to 10 CFR 50, Appendix A, Criterion 51. Criterion 51 stipulates that the containment pressure boundary be designed for operating, testing and postulated accidents such that the ferritic materials behave in a non brittle manner. The Aging Needs, Column 7 for item 92 states that "Methods to measure embrittlement properties" are needed. The Life Extension Needs Column 8 states that "Improved NDE techniques to determine embrittlement properties" are needed. Therefore, for item 92, the review recognizes the need for improved NDE to provide in-situ embrittlement evaluation to verify that the containment material is behaving in a non brittle manner as stipulated in Criterion 51. Based on the results of the review, research is needed to improve traditional NDE and develop new NDE techniques for management of aging in the following areas:(a) - 1. Effective means to determine fracture toughness and strength, and material embrittlement, including embrittlement induced by irradiation, hydrogen, and thermal changes. For example, embrittlement appears as a problem in nine out of eleven priority rankings (NRC 1987b) for PWR components shown in the priority rankings of NPAR degradation mechanisms. - 2. Assessment of magnetic methods for material properties measurements to detect aging degradation of NPP steel materials should be encouraged and continued. Magnetic methods (Jiles 1988) may provide the techniques and have advantages over other NDE for in-situ evaluations especially as applied to the prediction of fatigue or creep damage. - Assessment of the use of acoustic emission (AE) for evaluating the continued serviceability of materials should be encouraged. AE is a unique tool that should have capabilities in environmental hardening, toughness, fatigue, and yield strength (Spanner 1979; Spanner 1985; Dal Re 1986). - 4. Additional improvements are needed for the evaluation of stress corrosion cracking and intergranular attack on the outside diameter and inside diameter of steam generator tubes. Current technology has problems in this area; in most cases, cracks in the U bends or tube sheet area cannot be detected until they are through-wall. NDE technology improvements are also needed in vessel evaluation. Current methods cannot, with proven accuracy, detect shallow flaws of most interest in vessel fracture evaluations. - 5. Studies are needed to determine NDE time intervals for inspection and the amount (coverage) of inspection needed to manage the aging process. (ASME Risk-Based and Reliability studies should provide a probabilitic basis for optimizing the level of NDE, as well as the intervals.) ⁽a) This observation supports the need for the current work in NDE to improve existing techniques and develop new ones. #### WATER CHEMISTRY CONTROL Water chemistry control is an important aging factor in the operation of LWRs, including steam generator tube corrosion in PWRs. Although considerable work on this factor has been conducted, especially in the 1970s, more research may be required before existing guidelines and/or instruments can be revised. As noted in the review, Appendix III, page III.17, item 125, control of primary side water chemistry is technically controlled by the TSs. The comments of item 125 (Column 9) note that secondary side water chemistry is administratively controlled and not controlled by the TSs. The comments indicate that improvements should be made in the management of the SG's secondary water side chemistry. #### EMPHASIS ON THE ASME CODE The ASME BPVC Code is a principal instrument used in the design and construction of LWRs and it provides significant guidance and insight into the management of aging. The code is a living document with ongoing revisions, and many of the aging issues noted in this review are currently being addressed by ASME code committees and special working groups, e.g., the current PVRC Section III/XI committee, is addressing code limitations including PLEX. However, special emphasis needs to be placed in the following areas: - 1. Code revisions are needed that more vigorously address material and/or component deterioration as functional criteria of the design. - 2. The Code's emphasis on plant design requirements that allow for component ISI, repairs and replacements should continue. Improvements in the code that prescribe alternate or better design methods for ISI, repairs and replacements should be encouraged. - 3. It has been estimated that a change in the Code takes about eight to ten years to fully implement. When appropriate, shorter time intervals are needed for implementing changes in the Code. The time cycle for specific items that did not appear in earlier codes needs to be shortened. (In some instances the time cycle has been shorten; it can be done. For example a new subsection for Section XI, IWT on erosion and corrosion, was approved by ASME's Main Committee within a three year time frame and in two years after ASME's Council on Codes and Standards gave the go-ahead. An additional problem, however, exists after the ASME involvement and that is the implementation through 10 CFR 50, 50.55a Codes and Standards. Thus, a change in code can also be coupled with the implementation delays. ASME Code Case(s) procedures and the RGs that identify acceptable cases certainly help the overall picture, but they are not the total answer.) #### 7.0 REFERENCES - U.S. Nuclear Regulatory Commission (NRC). 1987a. <u>Nuclear Plant Aging Research (NPAR) Program Plan</u>. NUREG-1144, Rev. 1., Washington, D.C. - U.S. Nuclear Regulatory Commission (NRC). 1987b. Residual Life Assessment of Major Light Water Reactor Components--Overview. NUREG/CR-4731, Vol. 1 EGG-2469, eds., V. N. Shah and P. E. MacDonald, Idaho National Engineering Laboratory, Idaho Falls, Idaho. - U.S. Nuclear Regulatory Commission (NRC). 1982. <u>Resolution of the Reactor (Task A-11) Vessel Materials Toughness Safety Issues</u>. NUREG-00744, Washington, D.C. - U.S. Nuclear Regulatory Commission (NRC). 1979. <u>Potential for Low Fracture Toughness and Lamellar Tearing on PWR Steam Generator and Reactor Coolant Pump Supports</u>. NUREG-0577, Washington, D.C. - Jiles, D. C. 1988. <u>Review of Magnetic Methods for Nondestructive Evaluation</u>. Center for Nondestructive Evaluation, Iowa State University, Ames, Iowa. - U.S. Nuclear Regulatory Commission (NRC). 1986. <u>Status of Maintenance in the U.S. Nuclear Power Industry 1985</u>. NUREG-1212, Vol. 2, Washington, D.C. - Spanner, J. C., Sr. 1979. <u>Acoustic Emission Some Examples of Increasing Industrial Maturity</u>. American Society for Testing and Materials, Philadelphia, Pennsylvania. - Spanner, J. C., Sr. 1985. <u>Acoustic Emission, Pressure Vessel and Piping Technology 1985 A Decade of Progress</u>. American Society of Mechanical Engineers, New York, New York. - Dal Re, V. January-March 1986. <u>Fracture Toughness Measurement of a NiCrMo Steel by Acoustic Emission</u>. Journal of Acoustic Emission, Vol. 5, No. 1, pp. 39-44. Acoustic Emission Group, University of California at Los Angeles, Los Angeles, California. # APPENDIX I GLOSSARY AGING ISSUES #### APPENDIX I #### **GLOSSARY OF AGING ISSUES** corrosion - Corrosion is an aging issue that applies to all components in varying degrees and is manifested in different ways. Corrosion in the broad sense is the deterioration of material surfaces, chiefly, through electrochemical reactions and is influenced by the environment of the material or component, e.g., high humidity. A familiar example is the rusting of iron. Corrosion is also linked to other aging issues by causing an acceleration of the degradation, e.g., stress corrosion cracking, irradiated assisted corrosion cracking, corrosion fatigue, and corrosion/erosion. corrosion/erosion - Corrosion/erosion occurs when the eroding fluid (liquid or gas) or particulate matter is in the presence of or contains corrosion causing products, i.e., the corrosion reaction is accelerated by the relative movement of the corrosive fluid and the metal surface. This mechanism involves the effects of mechanical wear or abrasion. Characteristics of corrosion/erosion are the appearance of grooves, gullies, waves, round holes and valleys on the surface of the component. An example of corrosion/erosion is tube wall thinning caused by impingement of water droplets containing suspended solids. crack formation and flaw growth - Material crack formation and fatigue growth of flaws are indicators of material degradation and possible failure by through-wall cracks. A crack is a discontinuity at a particular location in a material as a result of localized excessive elastic/plastic deformation. A crack will propagate as long as the tensile stress acting on the component
supplies sufficient energy to sustain a new crack surface (this aging issue is related fatigue and SCC, i.e, without a driver a crack will not grow). Present methods of flaw and crack detection are not 100% effective and improvements are needed for evaluation of crack initiation and growth. The issue also encompasses human factors of NDE staff, e.g., training. creep/swelling - Creep is defined as the progressive deformation of a material at constant stress. Creep failure (fracture) or stress rupture exhibits the influence of relative high temperatures on long-time load-bearing characteristics. The creep temperature is often expressed as a homologous temperature, i.e., the ratio of the operating temperature T to the absolute melting temperature T_m (K). Creep of load carrying components becomes of importance at a homologous temperature greater than a ratio of 0.50. Load carrying components operating in the temperature range of 538°C to 870°C (1000°F to 1600°F) are susceptible to creep. Generally, creep is not a major problem in LWRs because of their temperature operating levels. These levels at around 550°F are below the creep range for ASME Code materials specified in ASME BPVC, Section III. This aging mechanism, however, is of interest to the NPAR program because of its impact on electrical components/systems. An increase in the dimensions of components (e.g., fuel elements, and fuel cladding) swelling is caused by the accumulation of fission product atoms in the structural lattice of components. The fission products occupy a larger volume than the original material which caused swelling. element burnout(s) - Element burnouts and repair and replacement of heaters are identified as an aging issue for the pressurizer vessels. erosion - Erosion is a broad aging issue that is principally associated with fluid flow in components. High velocity water impingement can erode the walls of pipe and fittings. By definition pure erosion is the mechanical or wear action of a fluid and/or particulate matter on the surface of component parts. Erosion is usually accelerated by the presence of solid particles in flowing fluid. The possible consequences of typical erosion is the thinning of a pipe wall to failure. examination, inspection and maintenance and repair - These activities may be considered aging issues because the management of aging is affected by these activities and in some cases aging is accelerated by poor examination, harsh inspection, and improper maintenance and repair. Also conditions may exist that do not permit adequate performance of the activities. excessive/harsh testing - Testing programs and procedures that require excessive testing can lead to accelerated aging, e.g., harsh testing programs associated with the emergency diesel generators have been identified as contributors to aging. fatigue - Fatigue in reactor operations is broadly defined as structural weakness and loss of resiliency in materials resulting from stressors, e.g., vibrations and thermally-induced fatigue cracks. Fatigue is defined as the phenomenon leading to fracture under repeated or fluctuating stresses having a maximum value less than the tensile strength of the material. Stress induced by stratified flow is an example of thermal fatigue. As the name implies, in stratified flows the cool water flows on the bottom of the pipe while steam flows on the top. These conditions can cause temperature differences that can lead to thermal cycling and fatigue of piping systems, e.g., pressurizer spray line and vessel nozzles. fracture toughness - Fracture toughness is a material property that relates to the ability to resist fracture. Fracture toughness is related to the unique stress intensity level that causes failure in a component (is also called the critical stress intensity level). Its measure is the stress intensity factor, which incorporates both geometrical terms (the crack length appears explicitly, while the crack tip radius is assumed to be very sharp) and the stress level. It is an embrittlement aging issue specific to NPPs because ferritic materials suffer from decrease in fracture toughness as a result of irradiation. The CFRs specifically provide limits for the RPV material tests, i.e., initial Charpy tests of material shall be 75 ft-lb (102J) and throughout the life of the vessel shall not be less than 50 ft-lb (68J). Additionally, the material RT_{NDT} is limited by the PTS screening rule. intergranular stress corrosion cracking (IGSCC) - IGSCC is a preferential corrosion at the grain boundaries of a susceptible metal or alloy in the presence of a chemically aggressive environment, e.g., hot oxygenated water, and a tensile stress. IGSCC has occurred in austenitic SS in oxidizing environments such as BWRs. It also has occurred in SG tubes, safe ends, and type 304 SS piping. The principal concern is that SCC can cause ruptures, leakages, and plant shutdowns. irradiation embrittlement - Irradiation embrittlement is defined as a decrease in fracture toughness due to long-term exposure to nuclear radiation. High neutron fluence levels can cause embrittlement in the RPV beltline region as well as other reactor internals and core supports. A reduction in tensile ductility is also caused by the neutron exposure. low-flux long-time irradiation of vessel, vessel internals and supports - This aging issue is principally identified for the RPVs and vessel supports. Long-term flux reduces toughness and initial margins of safety in RPVs. seismic failure/damage - Aging issues associated with earthquake damage were considered. Although not a classic aging issue, NPPs are required to evaluate seismic conditions and the consequences of natural phenomena and the damage that may result from these events. Aging could weaken a component so that it would not be able to withstand a seismic event. specific environmental factors, e.g., moisture, oxidation, chemicals, oils, and dust - Environmental factors can induce aging in many NPP components. For this review the factors of moisture, chemicals, oils, dust, etc., are primarily of concern in the operation, testing, and performance of the EDGs. Because these factors can induce aging, physical location, surroundings, housekeeping and maintenance are important to EDGs. All these factors or elements can accelerate many of the aging mechanisms associated with the operation of diesel engines and their support equipment. stress corrosion cracking (SCC) - SCC is degradation associated cracking accelerated by the combined effect of constant tensile stress, corrosion environments and susceptible microstructures. The stress may be residual in the material, as from cold working or heat treatment, or it may be externally applied. The observed crack may be transgranular or intergranular, depending on the nature of material and the environment. This term is a broader aging term than IGSCC and has been linked to bolting degradation in many cases as a principal aging problem, e.g., leaking steam through gaskets can react with the bolting lubricants and cause SCC. stud failure - This aging issue is a factor in degradation of closures, flanges, manways, etc., through the cracking of bolts and studs from stress corrosion, fatigue, and corrosion. thermal cycles - Aging issues are aligned with temperature cycles. Thermal cycling induces stress through thermal gradients/temperature changes. Thermal cycling induces thermal stress, low-cycle thermal fatigue, and high cycle fatigue (water temperature fluctuations). Low-cycle fatigue is defined as fatigue caused by high stresses and low numbers of cycles. Significant plastic strains occur during each cycle. Cycle lives are less than 10^4 to 10^6 . High-cycle fatigue is defined as fatigue caused by low stresses and high numbers of cycles. Strain cycles are in the elastic range. Cycle lives are greater than 10^4 to 10^6 . thermal aging embrittlement - Thermal embrittlement is defined as a reduction in the ductility of a susceptible material due to a chemical change influenced by high temperature for long times. Thermal embrittlement of cast stainless steel components (pump housing, valve bodies, piping and fittings, etc.) is possible over periods of many years, resulting in increased critical flaw sizes. Thermal aging can significantly reduce fracture toughness and ductility of LWR reactor components materials. The rate of thermal embrittlement generally increases with increase in temperatures; however, specific material compositions of various steels are factors in thermal embrittlement. thermally induced bending - This aging issue is principally (for this review) associated with the pressurizer caused by high-and low-cycle thermal loads at the water-steam interface in the vessel wall. (Thermally induced bending stresses can be a factor at other locations). thermally induced mechanical wear - This aging issue is principally (for this review) associated with the heater failure in pressurizers caused by wearing and thinning of the heater due to rubbing action with supports because of thermal growth. transient thermal and pressure loads - Transient or short thermal loads have been identified (for this review) as the transients effecting the pressurizer during heatups, cooldowns, testing, and abnormal events. For example, transients can occur in a few seconds and cause temperature changes of 55°C (100°F) in the surge-line nozzle. tube specific - denting, fretting and crevices - These aging issues are SG tube specific. Denting results from crevice corrosion of the tube support plate and tubesheet materials; corrosion of carbon steel support plate and tubesheet squeezes the tube outside diameter and can result in decrease of thermal efficiency and cracking in the tube. Crevices provide areas for localized corrosion due to stagnant solutions in lap joints, holes, welding surfaces etc. Fretting in SGs results principally from wear action between the tube and tube supports
and antivibration bars. vibration - Vibration is a broad aging issue that can cause degradation in many of the components. Vibration by definition is any physical process which produces cyclic variations or motion. It is an aging issue to the extent that the vibration may cause failure or damage to a component. Excessive vibration can damage components by wear and promote material mechanical fatigue and pipe weld fatigue cracking. Vibration is a dynamic action and is associated in this review primarily with piping systems and the EDG. Dynamic loads are caused by response of the component to an oscillating input, e.g., flowing water or a rotating equipment. wear - Wear usually results from the relative motion between two surfaces. Wear is the removal of discrete particles of material from a solid surface by the relative motion between that surface and one or more contacting surfaces. Wear is accelerated by hard and abrasive particles or action of fluids (erosion), vibration, or corrosive environments. The common result of wear is the reduction of thickness or damage to the mating surfaces. Wear is of a concern in rotating machinery, e.g., in pumps and EDGs and the other equipment/parts, e.g., valves stems and seats, and other mechanism subject to motion and vibration. weldments - specific to dissimilar metals of safe ends - Weldments are formed by the welding together an assembly of pieces such as pipe to nozzles. Safeend weldments have specific problems due to dissimilar metals. Among these are low-cycle thermal and mechanical fatigue, and IGSCC in the heat affected zone (HAZ) in the base metal. #### APPENDIX II #### REGULATORY INSTRUMENT REVIEW FOR REACTOR PRESSURE VESSEL #### **Understanding and managing** aging of PWR reactor pressure vessels Materials - Low alloy carbon steel - SA-533B-1, SA-508-2, SA-302B Cladding Weldments - Type 308 SS and 309 SS, Submerged arc (granular flux - linde) 80, 91, 124 and 1092 manganese-molybdenum nickel filler wire) narrow gap submerged arc, shielded metal arc, and electrostag Closure studs - SA-540 Gr. B24 Class 3 Stressors Environment Neutron flux and fluence, temperature, reactor coolant, cyclic thermal and mechanical loads, preloads, and boric acid leakage Typical PWR vessel showing important degradation sites. Effect of irradiation on the Charpy impact energy for a nuclear pressure vessel steel. | UNDERSTANDING AGING (Materials, Stressors, & Environment Interactions) | | MANAGING AGING | | | | | | | | |--|---|--|--|---|--|--|--|--|--| | Sites | Aging Concerns | Inservice Inspections, Survei | Mitigation | | | | | | | | Beltline region | Irradiation embrittlement - Chemical composition of vessel materials (Cu, Ni, P) - Drop in upper shelf energy (USE) - Shift in reference nil-ductility-transition-temperature (PIT _{NOT)} Environmental fatigue | NRC Requirements Surveillance program to assess irradiation damage, i.a., shift in RT _{NDT} and drop in USE (10 CFR 50 App. H, Reg. Guide 1.99, Rev. 2) Pressurized thermal shock (PTS) screening criteria (10 CFR 50.61) PTS rule, RG 1.154 Demage evaluation (10 CFR 50 App. G) Pressure - Temperature (P-T) limits during heatup, cooldown, criticality, and inservice leakage and hydrostatic pressure test to prevent nonductile fracture (Tech. Spec. requirement, 10 CFR 50 App. G) [P-T limits are also applied to non-beltiline region Low temperature overpressurization (LTOP) protection setpoint (Tech. Spec. requirement) Volumetric examination of all welds during each inspection interval (10 CFR 50.55a, IWB-2500, Reg. Guide 1.150, Rev. 1) Flaw evaluation (10 CFR 50.55a, IWB-3000) Leakage and hydrostatic pressure tests (10 CFR 50.55a, IWA-5000) | Recommendations Include fracture toughness and tensile test specimens in surveillance program Develop use of reconstituted and miniature specimens Develop techniques for in situ determination of mechanical properties Perform accelerated irradiation tests of reconstituted specimens Revise Reg. Guide 1.99, Rev. 2 to account for phosphorus with low copper Use state-of-the-art ultrasonic inspection techniques for improved reliability of defect detection, sizing, and characterization - Automated amplitude-based systems - Tip diffraction techniques - Large-diameter focused transducer Use fatigue crack growth curves (ASME SC XI, Appendix A) Develop acoustic emission monitoring to detect crack growth (Nonmandatory appendix is being developed for ASME Section XI) | Neutron flux reduction
Inservice annealing
(ASTM E 509-86)
Determined and
remove and remove annealing and
reembrittlement rate | | | | | | | Outlet/inlet nozzles | Environmental fatigue irradiation embrittlement Function of nozzle elevation (Potential impact of (Reg. Guide 1.99, Rev. 2) | Volumetric examination of all nozzle-to-vessel welds and nozzle inside radius sections during each inspection interval (IWB-2500) Volumetric and surface examination of all dissimilar metal welds during each inspection interval (IWB-2500) | Use on-line fatigue monitoring (monitoring of pipe wall temperatures and coolant flows, temperatures, and pressures) Evaluate irradiation embrittlement damage | | | | | | | | Instrumentation nozzles
CRDM housing nozzles | Environmental fatigue | Visual examination of external weld surface of 25% of nozzles during system hydrostatic test (IWB-2500) | | | | | | | | | Closure studs | Environmental fatigue - preload cycles during head replacement Borlc acid corrosion (If leakage occurs) | Volumetric and surface examination of all studs and threads in flange stud holes during each inspection interval (IWB-2500) | | | | | | | | #### Understanding and managing aging of BWR pressure vessels Materials Cledding Nozzies Sale Ends Low alloy carbon steel SA-533B-1, SA-302B Type 308 SS or 309 SS, - SA-508-2 - Type 304 SS, Type 316 SS, Inconel SB-166, Inconel SB-167, SA-508-1 Thermal Sieeves - Type 304 SS Closure Studs - SA-540 Gr. B22 or B23 Weldments - SA-193 Gr. B7 Stressors Environment Operational transients, neutron flux and fluence, temperature, and reactor coolant Control rod -Flux monitor Typical BWR pressure vessel Reacto core outlet tube top head spray Feedwater-Inlet Jet pump/ recirculating water inlet Skirt - supports Beltline region- Cross section of feedwater nozzle with cracking location | | DERSTANDING AGING ors, and Environmental Interactions) | MANAGING AGING | | | | | | | |---|--|---
---|---|--|--|--|--| | Sites | Aging Concerns | Inservice Inspection, Surv | eillance, and Monitoring | Mitigation | | | | | | Feedwater nozzles and safe end welds | High-cycle thermal fatigue caused
by feedwater leakage
Environmental fatigue | Recommendations Use on-line fatigue monitoring (monitoring of pipe wall tamperatures and coolant flows, temperatures, and pressures) Develop criteria for assessing high-cycle fatigue damage | Modify dealgn,
revise operating
procedures, and
remove feedwater
nozzle cladding to
prevent fatigue
cracking | | | | | | | Recirculation inlet/outlet nozzles and disalmilar metal welds | IGSCC crack initiated in HAZ may propagate into base metal
Environmental fatigue | Volumetric and surface examination of all disalmilar metal welds during each inspection interval (IWB-2500) | Develop on-line corrosion monitoring
Evaluate long-term effects of hydrogen
water chemistry | Implement hydrogen
water chemistry to
reduce IGSCC
damage | | | | | | Welds - Control rod drive stub tubes - Interior attachments | IGSCC crack initiated in HAZ may propagate into base metal by corrosion and/or environmental fatigue | Visual examination of all accessible interior
attachment welds during each inspection
interval (IWB-2500) | Develop robotics system for remote
inspection probe positioning and
scanning | | | | | | | Bettiine Region | Irradiation embrittlement - Chemical composition of vessel materials (Cu, Ni, P) - Drop in upper shelf energy (USE) - Shift in reference nit-ductility-transition-temperature (RTNor) - Welds are more susceptible than base metal - Flux is lower than that in PWR vessel Environmental fatigue | Surveillance program to assess shift in RT _{NDT} and drop in USE (10 CFR 50 App. H, Reg. Guide 1.99, Rev. 2) Damage evaluation (10 CFR 50 App. G) Pressure-temperature (P-T) limits during heatup, cooldown, criticality, and inservice leakage and hydrostatic pressure tests to prevent nonductile fracture (Tech. apec. requirement, 10 CFR 50 App. G.) [P-T limits are also applied to non-beltline region] Volumetric examination of all shell welds during each inspection interval (10 CFR 50.55s, IWB-2500, Reg. Guide 1.150, Rev. 1) Flaw evaluation (10 CFR 50.55s, IWB-3000) Leakage and hydrostatic pressure tests (10 CFR 50.55s, IWA-5000, IWB-5000) | Revise Reg. Guide 1.98, Rev. 2 to account for phosphonous when copper content is low Use state-of-the-art inspection techniques for improved reliability of delect detection, sizing, and characterization Develop robotics system for remote inspection probe positioning and scanning Include fracture toughness and tensile test specimens in surveillance program Develop use of reconstituted and ministure specimens and accelerated irradiation of reconstituted specimens Use fatigue crack growth curves (ASME Section XI, Appendix A) Develop acoustic emission monitoring to detect crack growth (nonmandatory appendix is being developed by ASME Section XI) | Inservice annealing (ASTM E 809-86) Determine effects of annealing and reembrittlement rate implement neutron flux reduction program | | | | | | Closure Studs | Fatigue, fretting | Volumetric and surface examination of all studs
and threads in flange stud holes during each
inspection interval (IWB-2500) | | | | | | | | External attachment
welds such as skirt
supports | Low-cycle thermal and mechanical fatigue | Volumetric or surface examination (IWB-2500) | | | | | | | #### REGULATORY INSTRUMENT REVIEW FOR REACTOR PRESSURE VESSEL | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN S | CURRENT INITIATIVES | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS
COLUMN 8 | CONNENTS
COLUMN 9 | |-----------------------|--|-----------------------------------|--|--|--|---|---|--| | RPV
(1) | EXAMINATION, INSPEC-
TION AND SURVEIL-
LANCE (EIS) | 10 CFR 50 Appx.
A Criterion 32 | The RPV should be de-
signed to permit in-
spections. | NOME | Appropriate measures
are being defined
for plants where
inspections are
difficult. | M/A: Design doesn't
change over time. | RPVs need to be consid-
ered for acceptability
if critical areas are
not easily inspected. | The pressure boundary should be designed to permit inspections and appropriate material surveillance programs for the RPV. New aging related criteria may need to be written and referenced by this criterion. Currently the plants are required to apply criterion 32 or make a best effort to inspect the RPV. | | (2) | | 10 CFR 50,
Appx. G (111) | All inspection programs as per the ASME codes. | NOME | NONE | NOME | Inspections may need to
use different procedures
aimed at detecting
aging/degradation for
life evaluation includ-
ing irradiation and
fatigue failure modes. | Should reflect life extension decisions and aging research. Evidence for aging of RPV hardware includes erosive degradation of thimble tubes. A need exists for a new base line examination. | | (3) | | 10 CFR 50 | Surveillance and/or
inservice examination
for fracture toughness | HOME | MOME | Evaluate effects of age
on the material proper-
ties used in the cal-
culations (see embrit-
tlement issue). | Are new operating limits
and inspection frequen-
cies needed for life
extension? Inspection
criteria for irradiation | 10 CFR 50 Appx G (IV) requirements must be satisfied prior to life extension. Requirements for operation is 10 CFR 50 Appx, G (IV) is not satisfied: Bettine flams examined as per ASE Section XI. Work is needed to include Life extension decisions and sains | | | | Appx. G (V) -
B.
C. | Alternate criteria in-
volving ISI per ASME
Section XI | | | | and fatigue failure
modes may be needed. | research. Inspection exemptions will need to be reconsidered for life extension. | | (4) | | 10 CFR 50,
Appx. H | Capsule survey program. | NOME | Known to exist. | Assessment of the with-
drawal schedule and
number of samples may be
needed. Alternate test-
ing methods (1.e. mini-
samples) should be
considered. | Assessment of the with-
drawel schedule and
number of samples may be
needed. Capsules may
need to be reinserted or
pre-irradiated capsules
may need to be inserted.
Anneeling effects need
investigation. | No material surveillance program is required for
PPVs for which it can be demonstrated the pask
neutron fluence pt the end of the design life will
not exceed 10 ¹¹ n/cm² (E >1 Nev). The capsule
program should be as per ASTM E-185. Capsule loca-
tions and withdramal schedules are required. Modifi-
cations to ASTM E-185 for capsule withdrawal scheme
for new fuel menagement programs are in progress.
Similar designed and operated reactors may use
integrated surveillance programs. | | (5) | | Tech Spec 4.0.5 | References ASME Section
XI. | Repair. | MONE | Advances in available
MDE technology are
needed to detect shallow
flows of most interest
in vessel fracture
evaluations. | The unreliability of detection/sizing flams because of cladding effects should be addressed. Human factor effects of NDE staff should also be addressed. | Current flaw detection systems are not 100% effec-
tive. Detection systems should be improved.
Accessibility to BUR PRVs is a problem; remote
scanners are needed. | | (6) | | Tech Spec
4.4.9.1.2 | Capsule Survey Program | Burveiliance of
RPV transient
temperatures | MONE | Testing sample frequen-
cy. Alternate testing
methods (i.e. mini-
samples) should be
considered. | Assessment of accelerated irradiation effects. | Extend license if sufficient margins exist. | General Notes: 1. A "7" indicates further study/investigation is needed. 2. For the GSIs, "resolved" seems the generic safety issue is resolved, not necessarily the aging issue. 3. For meaning of abbreviations, acronyse, and initialises, used
throughout, see acronyses on page xi, xii, and xiii of the report. | COMPONENT
COLUMN 1 | I SSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|--------------------|-----------------------|--|--|------------------------------|--|---|--| | (7) | EIS (contd) | SRP 3.9.2.1.4 | NOME | MOME | NONE | N/A | Should the SRP address
life extension? | Testing during pre-operational and startup test program; This section does not apply after the start of plant operations. | | (8) | | sap
5.2.1.2.11.2 | Inservice inspection code
case and RG applicabil-
ity. | NOME | NONE | Need to verify that the
reference code cases
cover an adequete time
span for reactor opera-
tion. | NONE | Acceptable code cases for inservice inspection are found in Reg. Guide 1.147. Code cases must be reviewed every three years. | | (9) | | SAP 5.2.4.11.4 | In service inspection intervals. | NONE | NOME | Does inspection frequen-
cy need to be increased
in the last ten year
interval? More exten-
sive examinations may be
needed. | New life extension
document that reflects
time greater than forty
years? | Required inspections must be performed on reactor coolant pressure boundary components during each 10-year interval of service as per ASME Section XI IMA-2000. Optionimpose inspection plan A. | | (10) | | SRP 5.3.1.1.3 | Nondestructive examina-
tions (NDE) | NONE | NONE | 7 | Should the SRP address
life extension? | Special methods for NDE other than those in ASME should be reviewed. | | (11) | | SRP 5.3.1.1.6 | Surveillance data collec-
tion over vessel life-
time. | NOMÉ | NONE | Assessment of the with-
draunt schedule and
number of samples may be
needed. Alternate test-
ing methods (i.e., mini-
samples) should be
considered. | Should the SRP address
life extension? | RPV surveillance must be performed to monitor
changes in fracture toughness properties. | | (12) | | SRP 5.3.1.II.6 | Material Surveillance. | моне | NONE | Assessment of the with-
drawal schedule and
number of samples may be
needed. Alternate test-
ing methods (i.e. mini-
samples) should be
considered. | Should the SRP address
life extension? | No material surveillance program is required if it is aboun that the fluence will be less than 10 ⁷ r/cm ² (E > 1 Nev). If this is not met, a surveillance program is needed as per ASTM E185. Irradiation damage is a less severe problem for BARs than for PARs. | | (13) | | SRP 5.3.1.[[].6 | Fluence calculation or surveillance. | NOME | See note 1. | Assessment of the with-
drawal schedule and
rumber of samples may be
needed. Alternate test-
ing methods (i.e. mini-
samples) should be
considered. | Should the SRP address
life extension? | End-of-life fluence must be less than the maximum or
surveillance must be as per ASTM E185. | | (14) | | SRP 5.3.3 STP
5-2A | Fracture toughness,
pressure, temperature,
and surveillance require-
ments. | NOME | MOME | Appropriate regulatory instruments must be modified for eging. Alternate testing methods (i.e. mini-samples) should be considered. Revieu of circumferential welds and the effects of streaming are also needed. | Should the SRP address
life extension? | The BTP provides a summary of the requirements for
fracture toughness, pressure, temperature, and
surveillance requirements as stated in ASME codes
and 10 CFR 50 | | COLUMN 1 | ISSUE | REG. INSTRUMENT | AGING FEATURES
COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES | AGING WEEDS | LIFE EXTENSION NEEDS | COMMENTS COLUMN 9 | |----------|--------------|---|---|--|--|---|--|--| | (15) | | RG 1.150 | UT of RPV welds. | Inservice inspec-
tion ISI) | 7 | Better flaw detection
system are needed for
distributed micro-flaws. | Human factors of MDE should be evaluated, i.e., flaws incorrectly sized should be avoided. | NDE of welds for crack initiation and growth. New detection systems would constitute a mejor RED effort. Is 100% UT required for BMRs, to assess under cladding cracks? Cracks may propagate from cladding into steel in the RPV. | | (16) | EI\$ (contd) | RG 1.154 | In situ test for fatigue. | NOME | MONE | Needs regulatory posi-
tion development. | Needs regulatory posi-
tion development. | Applies to pre-startup vibration tests. The RG does not consider fluence effects. | | (17) | | RG 1.34 | Trace element effects on
electroping welds; resid-
uel elements not com-
sidered. | HOME | HOME | Assess effects of resid-
uni elements. | Needs regulatory posi-
tion development. | Applies to pre-startup vibration tests. The RG does not consider fluence effects. | | (18) | | RG 1.65 | NDE/UT for crack, etc. in stude. | ISI | NONE | Revise RG 1.65 | Revise RG 1.65 | The document allows for the monitoring of studs for damage with time. | | (19) | | RG 1.2 | In situ test for fatigue. | MONE | NOWE | Heads regulatory posi-
tion development. | Heeds regulatory post-
tion development. | Applies to pre-startup vibration tests. The RG does not consider fluence effects. | | (20) | | ASME Sec XI
IVA-2200
IVA-2300
IVA-2400 | Identifies the rules and requirements for inspec-
tion responsibilities, accessibility, examina-
tion methods, personnel qualifications frequency and records. Minimum basis for all require-
ments. | иоме | Sec XI under review
for life extension
applicability | Alternate testing meth-
ods (i.e. mini-samples)
should be considered. | N/A . | Applies to the pressure retaining components only. The only life extension application is the design, fabrication, installation and inspection of replacement components. Specific requirements are found in ASME Sec XI IMB-2500. | | (21) | | GS1 29 | Cracking and degradation
of boits and stude from
stress corrosion,
fatigue, boric acid
corrosion and erosion
corrosion. | ACOME | жоне | Does the inspection frequency of fraction inspected need to be increased for extended life? Do records need to be maintened and analyzed for trands of replaced stude and boilts? | Further analysis needed. | Bolting degradation or failure in nuclear power plants - Priority - HIGR - Proposed imagesting 10% of bolts each outage, extending an outage 1.5 days This issue is broader than stude and bolts for the PMV. | | (22) | | GS1 79 | Axial temperature gradi-
ents that could cause
thermal stress in the
flames area or in the
stude. Cycling over the
life of the plant may
reduce fatigue mergin. | NOME | NOME | further analysis needed. | Further analysis needed. | Unenelyzed RPV thermal stress during natural convec-
tion cooldown
• Priority MEDIUM | | (23) | | GSI 94 | Major overpressure of the
RCS, in combination with
the existence of flaws,
could result in a prittle
failure of the RPV. | NOME | MCME | Further enelysis needed, | Further analysis needed | Additional Low temperature overpressure protection
for LNRs
• Priority HIGH | | (24) | | GSI 111 | Stress corrosion cracking | MONE | NONE | Further enelysis needed. | Further analysis needed. | Stress corrosion crecking of pressure boundary
ferritic steels in selected environments
- Priority LOW
- Classified as Licensing Issue | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES
COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS COLUMN 8 | COMMENTS
COLUMN 9 | |-----------------------|--|-----------------|--|--|------------------------------|---|--
--| | (25) | EIS (contd) | GSI A-11 | As plants accumulate increasing service time, neutron irradiation reduces the material fracture toughness and initial margins of safety. | NONE | NOME | Monitor and analyze
trende of Nil-Ductility
temperature | Further analysis needed. | Reactor vessel materials toughness • Priority RESOLVED with issuance of NUREG-0744 and Generic Letter 82-66 • See A-49 for a related discussion. Reactor Pressure Vessel | | (26) | | GS1 A-26 | Toughness at low tempera-
ture | NONE | NONE | Further analysis needed. | Further analysis needed. | Reactor Pressure Vessel Transient • Priority RESOLVED with publication of NURED-0224 and SBP 5.2 • Numerous reported pressure transients in PWRs where TS pressure and temperature limits were exceeded. Majority at solid water condition of startup or shutdown and relatively low reactor temperature. Less toughness at low temperature, therefore more susceptible to brittle fracture. | | (27) | | usi A-49 | Neutron irradiation of
the reactor pressure
vessel weld and plate
materials decreases the
fracture toughness of the
materials. | NOHÉ | MONE | Monitor and analyze
trends of Mil-Ductility
temperature, | Further analysis is
needed to determine what
impact life extension
will have on the
brittleness of RPV
materials. | Pressurized Thermal Shock (PTS) Resolution for aging will be affected by licensee actions that include annualing and fuel management practices to reduce flux at reactor pressure vessel. | | (28) | | GS1 8-6 | Through wall cracks and fatigue crack growth | NONE | NONE | Further analysis needed. | Further analysis needed, | Loads, load combinations, stress limits • Priority HIGM • See MUREG-2800 Sup! | | (29) | | GS1 C-12 | Structural demage by
vibrations of sufficient
magnitude, Fretting due
to deficient design and
material selection for
anti-vibration bars.
fatigue failure, particu-
larly at nozzles where
stresses are highest. | MOME | NOME | Further analysis needed. | further analysis needed. | Primary system vibrations • Priority RESOLVED | | RPV
(30) | IRRADIATION EMBRIT-
TLEMENT, FRACTURE
TOUGHNESS (IEFT) | 10 CFR 50.55a | System and component designs shall meet ASME requirements. | NONE | NONE | Reference documents need to reflect aging. | Related documents need
to be reviewed for life
extension. | ASME requirements must be met throughout the operating life. ASME Section XI is currently under review for LR applicability. | | (31) | | 10 CFR 50.60 | Acceptable criteria for fracture prevention. | NONE | NOME | Reference documents need to reflect aging. | New document section may
be needed to address
life extension. | References 10 CFR 50 Appx. G and H. | | (32) | | 10 CFR 50,61 | Frecture toughness re-
quirements to protect
against PTS | NOME | See note 1. | lapact of aging on
increased risk for PIS-
related event occurrence
needs to be addressed. | PTS needs to be better
understood for the plant
conditions that would
exist efter life exten-
sion. | Provides fracture toughness requirements for protection against pressurized themat shock. Calculation of RT _(MCT) for the RV and the overlay clad irradiation demage. Requirements may need to be changed to reflect potential new failure modes caused by irradiation demage. A need exists for the improvement of meaningful flee population data and for identifying the influence this data has on probabilistic fracture analysis. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES
COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS COLUMN 8 | COMMENTS
COLUMN 9 | |-----------------------|-------------------|--|---|--|---------------------|---|---|---| | (33) | IEFT (contd) | 10 CFR 50,
Appx. A Cri-
terion 31. | Design Hargin specifica-
tions. | MONE | NONE | Are margins quantified
as a function of expos-
ure or are they based
only on initial design? | Evaluation of ASME
Section XI, Appx. A for
mergins for extended
duty; comparison to
refurbishment activities
such as annealing. | The pressure boundary should be designed with suffi-
cient margin to prevent brittle fracture and rapid
propagation of fractures. The design reflects meter-
ial properties, effects of fradiation, the size of
flams, and the stresses that are experienced. This
section does not apply after the start of plant
operations. | | (34) | | 10 СFR 50,
Аррк. G | Fracture toughness re-
quirements for ferritic
steels referenced to ASME
Section III codes. | NOME | NOME | Enhanced MDE of vessel
may be needed. | Effect of anneating on
fracture toughness and
crack tip geometries
(micro-demage modifica-
tion by diffusional
mechanisms curing an-
neating). | Should reflect life extension decision and aging research. Assumes the flams of ASME Section XI, Appendix A. | | (35) | | 10 CFR 50,
Appx. G (111) | Fracture toughness re-
quirements as per the
ASME codes. All inspec-
tion programs as per the
ASME codes. | NOME | MONE | Inspection scope may
need to be increased. | Inspections may need to
use different procedures
aimed at detecting
aging/degradation for
life extension including
irradiation and fatigue
failure modes. | Should reflect life extension decisions and aging research. Evidence for aging of RPV hardware includes erosive degradation of thimble tubes. | | (36) | | 10 CFR 50,
Appx. G (IV) | Fracture toughness requirements. | MONE | MONE | Review of frequency of assessments of RPV K_{1C} tocation on uppershelf and uppershelf toughness reduction. | Need to determine ef-
fects of annealing. | Includes Charpy upper shelf energy restrictions, and temperature limitations for operations and tests. Assumes the flaws of ASME Section XI, Appendix A. Requirements may need to be changed to reflect potential new failure modes caused by irradiation damage, fatigue, erosion, etc. | | (37) | | 10 CFR 50,
Appx. G (V) (B) | Inservice examination requirements. | MOME | NONE | Evaluate effects of age
on the materials proper-
ties used in the calcu-
lations. | Are new operating limits
and inspection frequen-
cies needed for life
extension? Inspection
criteria for irradiation
and fatigus failure
modes may be needed. | 10 CFR 50 Appx G (IV) requirements must be satisfied prior to life extension. Requirements for operation if 10 CFR 50 Appx. G (IV) is not satisfied; Beltline flews examined as per ASME Section XI; evidence of fracture toughness from tests; existence of sufficient safety margins. Work is needed to include life extension decisions and aging research. Inspection examptions will need to be reconsidered for life extension. | | (38) | | 10 CFR 50,
Арри. Н | Capsule survey program. | КОНЕ | , | Assessment of the with-
drawal schedule and
number of samples may be
needed. Alternate test-
ing methods (i.e. mini-
samples) should be
considered. | Assessment of the with-
drawni schedule and number of samples may be
needed, Annesting ef-
fects need investiga-
tion. | No meterial surveillance program is required for RPVs for which it can be demonstrated the peak neutron fluency at the end of the design life will not exceed 10' n/cm' (E > 1 Mev). The capsule program should be as per ASTM E-185. Capsule locations and withdrawal schedules are required. Modifications to ASTM E-185 for capsule withdrawal scheme for new fuel management programs are in progress. Similar designed and operated reactors may use integrated surveillance programs. | | (39) | | Tech Spec
3/4.4.9 | P/T Curve Adjustments | Annealing, re-
placement | NCHE | Extend radiation damage curve to higher fluences. | Need to determine the effects of annealing. | Trend data to project when flux reductions are needed. | | \blacksquare | | |----------------|--| | \blacksquare | | | • | | | α | | | CONFONENT | 1SSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS COLUMN 8 | COMMENTS
COLUMN 9 | |-----------|-------------------|------------------------|---------------------------------------|----------------------------------|------------------------------
--|--|---| | (40) | IEFT (contd) | Tech Spec
4.4.9.1.2 | Capsule Survey Program | Fuel Management | NONE | Testing sample frequen-
cy. Alternate testing
methods (i.e., mini-
samples) should be
considered. | Accelerated Irr. effects. | Extend license if sufficient margins exist. | | (41) | | SRP 5.3.1.1.1 | Material irradiation resistance. | NOME | NOME | Need to assess if design
data bases are suffi-
ciently complete with
respect to fluence, | Should the SRP address
life extension? | Deals with the initial design choice of materials. Adequacy for use of materials is to be assessed on the basis of mechanical and physical properties, effects of irradiation, corrosion resistance, and fabricability. This section does not apply after the start of plant operations. | | (42) | | SRP 5.3.1.1.3 | Nondestructive examina-
tions. | NONE | NOME | Alternate testing meth-
ods (i.e., mini-samples)
should be considered. | Should the SRP address
life extension? | Special methods for NDE other than those in ASME should be reviewed. | | (43) | | SRP 5.3.1.1.5 | Fracture toughness calculation. | MONE | NONE | Many of the vessels with low upper-shelf weld problems are ring forged vessels. Present computational methods are based on axis-symmetric (2-0) analysis. The effects of streaming are thought to be potentially significant and this may require a 3-D analysis model with appropriate streaming simulation. Calculational methods are standard regardless of material. | Minor revision of exist-
ing document is needed
to reflect the meareness
of material property
degradations. A data
base reference for aged,
armeeled meterials is
needed, or the expected
results should be
standardized. | Fracture toughness tests must be performed on all ferritic tests specimen. Fracture toughness is characterized by a reference temperature. | | (44) | | SRP 5.3.1.I.6 | Data collection over vessel lifetime. | NONE | NONE | Record keeping. | Should the SRP address
life extension? | RPV surveillance must be performed to monitor changes in fracture toughness properties. | | (45) | | SRP 5.3.1.11.6 | Material Surveillance. | NONE | NONE | Assessment of the with-
drawal schedule and
number of samples may be
needed. Alternate test-
ing methods (i.e. mini-
samples) should be
comsidered, | Should the SRP address
life extension? | No material surveillance program is required if it is shown that the fluence will be less than 10^{17} n/cm² (E > 1 Mev). If this is not met, a surveillance program is needed as per ASTM E185. | | (46) | | SRP 5.3.1.111.6 | Fluence calculation or surveillance. | NONE | 7 | Assessment of the with-
drawal schedule and
number of samples may be
needed. Alternate test-
ing methods (i.e. mini-
samples) should be
considered. | Should the SRP address
life extension? | End-of-life fluence must be less than the maximum or
surveillance must be as per ASTM E185. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 6 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION NEEDS COLUMN 8 | CONNENTS
COLUMN 9 | |-----------------------|-------------------|---|---|--|---|--|---|---| | (47) | | SRP BTP-MTEB
5-2 A | Fracture toughness,
pressure, temperature,
and surveillance require-
ments. | NOME | NOME | Appropriate regulatory instruments must be modified for aging. Alternate testing methods (i.e. mini-samples) should be considered. | Should the SRP address
life extension? | Summary of the requirements for fracture toughness, pressure, temperature, and surveillance requirements as stated in ASME and 10 CFR 50. | | (48) | IEFT (contd) | RG 1.154 | In situ test for fatigue. | HOHE | NONE | Needs regulatory posi-
tion development. | Needs regulatory posi-
tion development. | Applies to pre-startup vibration tests. The RG does not consider fluence effects. | | (49) | | RG 1.99 Rev. Z | Fluence/chemistry factors
for transition tempera-
ture shift. | NONE | ионе | Head to account for phosphorous with low copper. | Irradiation series to
fluences appropriate for
life extension. Revision
to &C for BUR P/T
curves. | Conservative prediction of MOT shift as a function of fluence and alloy content. May constitute a penalty for BMR P/T curve restriction on RPVs. There is a revision of ASTM E-900 in progress, There is also a yet unmantered RG for physics dosimetry. Irradiation effects and fracture toughness information for base metal welds and clads to high fluences needs to be evaluated. | | (50) | | RG 1.XXX (New
RG - not num-
bered yet) | Identifies the physica-
dosimetry requirements
for PV fluence calcula-
tions. Recommendations
are based on current
industry practice and
state-of-the art dosime-
try methods. | Licensee RT _{PTS}
Analyses | Under review for
general applica-
bility. | Appropriate development of any new standards. | Assessment of needs for
any new standards. | This is a new regulatory guide. The methods and assumptions presented in this guide will provide an acceptable approach for determining pressure vessel damage (>1 Mev) fluences for input to the RT _{PTS} prescription given in 10 CFR 50.61. | | (51) | | ASME Sec 111
MB-2160
MB-2331
MB-3124 | NOT shift. | None, except for
original design
considerations. | Section under review
for life extension
applicability. | N/A | N/A | The code is based on fossil fuel experience and does not include fluence-caused problems. This section does not apply after the start of plant operations. | | (52) | | АSM€ Sec III
Аррк. G-2000 | Protection against non-
ductile vessel failure. | NOME | Section under review
for life extension
applicability | W/A | N/A | This appendix is non-mendatory. Contains procedures for obtaining allowable loadings for ferritic presume retaining materials. Methods for calculating critical stress intensity factors, allowable presumes, and shell and head service timits are given. Nozzles, flames and shell regions are considered. Service limits and hydrostatic test temperature limits are given. Requirements any need to be changed to reflect potential new failure modes caused by irradiation demage. RT _{MOT} mergins are being re-evaluated for RPV hydrotest. | | (53) | | ASME Sec XI
Appx. A. | Analysis methods for
fracture toughness and
irradiation effects. | NOME | Section under review
for life extension
applicability. There
is a yet unnumbered
RG for physics
dosimetry that will
relate to this
section | N/A | N/A | This appendix is non-mendatory. It contains pro-
cedures for accepting flaws that exceed IV8-3500
standards. Includes rules and equations for fracture
toughness determination, fatigue crack growth rate
analysis, and calculation of irradiation effects on
RI _{BUT} for the RPV. It also includes crack growth
rate curves. Requirements may need to be charged to
reflect potential new failure modes caused by ir-
radiation damage. | | COMPONENT | I \$ SUE | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS | COMENTS
COLUMN 9 | |-------------|--------------|------------------------|---|----------------------------------|--|---|---
--| | (54) | lEFT (contd) | ASME Sec XI
Appx. G | Fracture toughness crite-
ris. See comments. | NOME | Section under review
for life extension
applicability. | A need exists to con-
sider any special re-
quirements for flaws in
circumferential welds. | N/A | This appendix is non-mendatory. Fracture toughness criteria for protection against failure. For example, RT _{MOT} margins are being re-evaluated for RP hydrotest. Procedures for obtaining allowable loadings for ferrific pressure retaining materials. Calculation of stress intensity factors. Allowable pressure equations that can also be used for not-zies, flanges and shell regions. Service limits and hydrostatic test temperature requirements specified. Solting requirements to prevent failure. | | (55) | | CS1 94 | Major overpressure of the
RCS, if combined with
critical size crack,
critical size crack,
failure of the reactor
vessel. | NOME | NONE | further analysis needed. | further analysis needed. | Additional low temperature overpressure protection for LMRs - Priority HIGH | | (56) | | GSI A-11 | As plants accumulate more
and more service time,
neutron irradiation
reduces the material
fracture toughness and
initial margins of
safety. | NOME | NONE | Further analysis needed. | Further analysis needed, | Reactor vessel materials toughness • Priority RESOLVED with issuance of MUREG-0744 and Generic Letter 82-66 • See A-49 for a related discussion. | | (57) | | GS1 A-26 | Toughness at low tempera-
ture | MONE | NONE | further analysis needed, | Further analysis needed | Reactor Pressure Vessel Translent • Priority RESOLVED with publication of MUREG-024 and SMP 5.2 • Numerous reported pressure translents in PMRs where TS pressure and temperature limits were exceeded. Majority at solid water condition of startup or shutdown and relatively low reactor temperature. Less toughness at low temperature, therefore more susceptible to brittle fracture. | | (58) | | USI A-49 | Meutron irradiation of
the reactor pressure
vessel weld and plate
meterials decreases
fracture toughness of
meterials | MONE | NOME | Further analysis needed. | Further analysis needed. | Pressurized Thermal Shock For life extension analysis for resolution of GSI should address licensee actions such as annealing and fuel management. | | (59) | | GSI R-6 | Through well cracks and fatigue crack growth | HONE | NONE | Further analysis needed. | Further analysis needed. | Loads, load combinations, stress limits
• Priority NIGM
• See MUREG-2800 Sup1 | | RPV
(60) | FATIGUE | Tech Spec
4.4.9.1.2 | Cyclic loadings, P/T records. | Analysis, thermal barriers. | NONE | Actual Loading analysis. | Evaluate cycle (fmits. | Remalysis recommended to determine if cycle limits can be extended. Thermal barrier research needed. | | (61) | | SRP 3.9.1 | Transient induced
fatigue. Perform fatigue
analysis in design stage. | NONE | NONE | N/A | Should the SRP address
life extension? | SRP guides initial design. This section does not apply after plant startup. | | (62) | | SRP
5.2.1,2.11.2 | Inservice inspection code
case and RG applicabil-
ity, | NOME | MONE | Adequate time for the use of code casesCode cases expire or are reviewed every three years. | ЭКОН | Acceptable code cases for inservice inspection are found in Reg. Quide 1,147. | | COMPONENT
COLUMN 1 | COLUMN S
185NE | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|-------------------|--------------------------------------|---|--|--|---|---|--| | (63) | | RG 1.2 | In situ test for fatigue. | NONE | INCHE | Needs regulatory posi-
tion development. | Heeds regulatory posi-
tion development, | Applies to pre-startup vibration tests. The RG does not consider fluonce effects. | | (64) | | RG 1,48 | Prediction of cycles. | MONE | MOME | Needs revision; no enforcement capability. | Documentation of the
actual service history
needed. | Design loads are not the same as actual. Heed to account A, B, C, D, loads throughout life. | | (65) | Fatigue (contd) | ASME Sec 111
MG-3000
MG-3222.4 | Thermal and pressure
cycles, Design and analy-
ais. | None, except for
original design. | Section under review
for life extension
applicability. | N/A | H/A | Plants now operating need to start counting and documenting the cyclic history of each plant so comparisons can be made to assumed design cycles following the design code. This section does not apply after the start of plant operations. | | (66) | | GS1 29 | Cracking and degradation
of bolts and studs from
stress corrosion,
fatigue, and boric acid
corrosion. | NOME | NOME | Does the inspection
frequency or fraction
inspected need to be
increased for extended
life. | Further analysis needed. | Bolting degradation or failure in nuclear power
plants • Priority - NIGH • Proposed imspecting 10% of bolts each outage,
extending an outage 1.5 days. | | (67) | | GS1 79 | Axial temperature gradi-
ents that could cause
thermal stress in the
flange area or in the
studs. Cycling over the
life of the plant may
reduce fatigue mergin or
usage factor | ИСИЕ | NOMÉ | Further analysis needed. | Further analysis needed. | Unanalyzed reactor vessel thermal stress during
natural convection cooldown
• Priority MEDIUM | | (68) | | GS1 94 | Major overpressure of the
RCS, if combined with
critical size creck,
could result in a brittle
failure of the reactor
vessel. | NOME | NONE | Further analysis needed. | Further analysis needed. | Reactor Pressure Vessel Transient Priority RESOLYED with publication of MURGE-0224 and SRP 5.2 Mumerous reported pressure transients in PURs where IS pressure and temperature limits were exceeded. Rejority at solid water condition of startup or shutdown and relatively low reactor temperature. Less toughness at low temperature, therefore more susceptible to brittle fracture. | | (70) | | US1 A-49 | Neutron irradiation of
the reactor pressure
vessel weld and plate
materials decreases the
fracture toughness of the
materials. | NOMÉ | MONE | Further analysis needed. | further analysis needed. | Pressurized Thermal Shock | | (71) | | GS1 8-6 | Through well cracks and fatigue crack growth | NOME | NCHE | Further analysis needed. | Further analysis needed. | Loads, load combinations, stress limits • Priority NIGH • See NUMEG-2800 Sup1 | | (72) | | GSI C-12 | Structural damage by
vibrations of sufficient
magnitude, Fretting due
to deficient design and
material selection for
enti-vibration bers.
Fatigue failure, perticu-
larly at the nozzle where
stresses are highest. | NOME | NOME | Further analysis needed. | Further analysis needed. | Primary system vibrations • Priority RESOLVED | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS | CONNECT S
COLUMN 9 | |-----------------------|--|-----------------------|---|----------------------------------|------------------------------|--|--|---| | RPV
(73) | LOW FLUX, LONG TIME
IRRADIATION OF
VESSEL AND EXTERNAL
SUPPORTS | | | | | Time-temperature effects not understood, | Unknown at this time. | There are ACRS letters identifying the issue, The MRC is beginning to research the issue. There is evidence of larger RT _{MOT} shifts in BLR PRVs than previously expected. It is not yet known whether low flux conditions are significant contributions to the shifts. | | (74) | (Not used) |
 | | | | | | | (75) | | GSI A-11 | As plants accumulate more
and more service time,
neutron irradiation
reduces the material
fracture toughness and
initial margins of
safety. | MOME | NOMÉ | Further analysis needed, | Further analysis needed. | Reactor vessel materials toughness • Priority RESQLYED with issuance of MUREG-0744 and Generic Letter 82-66 • See A-49 for a related discussion. | | (76) | | GS1 A-26 | Toughness at low tempera-
ture | NONE | NOME | 7 | Further analysis needed. | PRV transients Priority RESOLVED with publication of MUREG- 1024 and SAP 5.2 Mumerous reported pressure transients in PURS where TS pressure and temperature limits were exceeded. Majority at solid water condition of startup or shutdown and relatively low reactor temperature. Less toughness at low temperatures, therafore more susceptible to brittle fracture. | | (77) | | GS1 A-49 | Neutron irradiation of
the reactor pressure
vessel weld and plate
materials decreases the
fracture toughness of the
materials. | NONE | MQME | Further analysis needed, | Further analysis needed. | Pressurized Thermal Shock | | RPV
(78) | CRACK INITIATION,
STUD FAILURE, FLAW
PROPAGATION (CISF) | Tech Spec 4.0.5 | References ASME Section
XI. | Repaír, | NOME | 7 | Human factors of NDE should be evaluated; missed flams or incorrectly sized should be avoided. Inspection criteria for new, irradistion induced failure stodes that may occur may be needed. | Current flaw detection systems are not 100% effec-
tive. Detection systems may need to be improved. | | (79) | | Tech Spec
3/4.4.10 | References ASME Section
XI. | Data retention.
Replacement. | NONE | Fluence effects not fully documented, | Documentation for data
analysis needed in lieu
of a replacement policy. | Bolt torque data may be collected and stress cycle
analysis performed to justify life extension. | | (80) | | SPP 4.5.2.
111. 4 | Environmental control | NONE | MONE | N/A; Limited to fabrica-
tion | Should the SRP address
life extension? | Environmental conditions must be controlled during fabrication of austentitic stainless steels to reduce the possibility of sensitization and microfissuring. This section does not apply after the start of plant operations. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS COLUMN 8 | CONNENTS
COLUMN 9 | |-----------------------|-------------------|-------------------------------------|---|---|--|---|---|--| | (81) | CISF (cantd) | SRP
5.2.1.2.II.2 | Inservice inspection code
case and RG applicabil-
ity. | MONE | NOME | Need to verify that the
reference code cases
cover an adequate time
span for reactor opera-
tion. | NOME | MRC accepted code cases for ISI are found in RG 1.147 | | (82) | | SRP 5.3.1.1.3 | Mondestructive examina-
tions | NONE | NOME | 7 | Should the SRP address
life extension? | Special methods for NDE other than those in ASME should be reviewed. | | (83) | | RG 1.150 | UT of RPV welds. | Monitoring | 7 | Better flam detection
systems are needed for
distributed micro-flams | MDE human factors meth-
ods need evaluation for
missed flaws or incor-
rectly sized flaws.
Inspection criteria for
new failure modes may be
needed. | MDE of welds for crack initiation and growth. | | (84) | | RG 1.65 | MDE/UT for crack, etc. in studs. | 1\$1 | NONE | Revise RG 1.65 | Revise RG 1.65 | ISI of stude for demage with time. Updating of RG 1.65 is recommended. | | (85) | | ASME Sec 111
M8-5000 | Acceptable flews and
benchmarking indications
covered. | Adequately covers
acceptable flams
and benchmarking
indications. | Section under review
for life extension
applicability. | N/A | N/A | Flaws detected and benchmarked in Section III, and
monitored and repaired by Section XI rules. This
section does not apply after the start of plant
operations. | | (86) | | ASME Sec XI
IVA-3300
IVA-3400 | Acceptable flamm and
benchmarking indications
covered. | Inspection and monitoring. | Section under review
for life extension
applicability. | N/A | N/A | Research or code work needed on the safety and risk
improvement of inspection methods and time periods
when the original design period is exceeded. Accept-
able methods of establishing such guidelines and
practices are needed. | | (87) | | GSI 29 | Cracking and degradation
of bolts and studs from
stress corrosion,
fatigue, boric acid
corrosion and erosion
corrosion. | NOME | NOME | Does the inspection
frequency or fraction
inspected need to be
increased for extended
life? | further analysis needed. | Bolting degradation or failure in nuclear power
plents
- profile HIGH
- Proposed inspecting 10% of bolts each outage,
extending an outage 1.5 days. | | (88) | | GS1 79 | Axial temperature gradi-
ents that could cause
thermal stress in the
flampe area or in the
studs. Cycling over the
life of the plant may
reduce fatigue margin or
usage factor | NOME | NOME | Further analysis needed. | further analysis needed, | Unanalyzed reactor vessel thermal stress during
natural convection cooldown
• Priority MEDIUM | | (89) | | 651 % | Major overpressure of the
RCS, if combined with
critical size crack,
could result in a brittle
failure of the reactor
vessel. | NOME | MOME | Further analysis needed. | Further analysis needed. | Additional low temperature overpressure protection for LMRs • Priority HIGH | | (90) | | GSI 111 | Stress corrosion cracking | NOME | HOME | further analysis needed. | Further enalysis needed. | Stress corrosion cracking of pressure boundary
ferritic steels in selected environments
• Priority LOW
• Classified as Licensing Issue | | COMPONENT
COLUMN 1 | COLUMN S | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES
COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS
COLUMN 8 | COUMENTS
COLUMN 9 | |-----------------------|--------------|----------------------|---|----------------------------------|---------------------------------|---|---|---| | (91) | CISF (contd) | GS1 8-6 | Through well cracks and fatigue crack growth | HOMÉ | NONE | Further analysis needed. | Further analysis needed. | Loads, load combinations, stress limits • Priority NIGM • See MUREG-2800 Suplema | | (92) | | GSI C-12 | Structural damage by
vibrations of sufficient
magnitude. Fretting che
to deficient design and
material selection for
anti-vibration bers.
Fatigue failure, particu-
larly at the nozzle where
stresses are highest. | MOME | NOME | Further analysis needed. | Further analysis needed. | Primary system vibrations • Priority RESOLVED | | RPV
(93) | CORROSTON | | | | | | | This may be minor issue in RPVs. There is no evidence of internal problems. Leaks from external sources have caused corroding on the external surface. | | (%) | | Tech Spec
3/4.4.7 | Chemistry control | N/A | NONE | NONE | M/A | Adequate programs exist for RCS chamistry control. | | (95) | | SRP 4.5.2.1,2 | NOME | NONE | NONE | N/A | New Life extension
document needed beyond
40 years | Process controls are needed during manufacture and
construction in order to lessen the likelihood of
SCC. This section does not apply after the start of
plant operations. | | (96) | | SRP 4.5.2.11.4 | NONE | MONE | NONE | Update/modify the ap-
propriate regulatory
instruments. | Should the SRP address
life extension? | Acceptance criteria for austenitic stainless steels referenced to RG 1.44 and 1.31. | | (97) | | SRP
5.2.1.2.II.2 | Inservice inspection code
case and RG applicability | NONE | NOME | Determine the adequacy
of the three year time
interval for code cases
as related to ISI. | MONE | NRC accepted code cases are found in RG 1.147. | | (98) | | SRP 5.2.4.[[.4 | In service inspection intervals | NONE | NONE | so retained to isi. Does inspection interval period need to be de- creased in the lest ten year interval? | New tife extension
document that reflects
time greater than forty
years? | Required inspection on the RPV pressure boundary
during each 10 year interval of service is per Sec
XI IM-2000, Question isehould inspection Program
8 be
used? | | (99) | | SRP 5.3.1.I.1 | Material corrosion resis-
tance. | NOME . | MONE | Need assessment of
changes in the proper-
ties and the corrosive
environment as a func-
tion of time/fluence. | New Life extension
guidence needed beyond
40 years. | Adequacy for use of materials is to be assessed on
the basis of mechanical and physical properties,
effects of irradiction, corrosion resistence, and
fabricability. This section does not apply after the
start of plant operations. | | (100) | | SRP 5.3.1.1.2 | NONE | NOME | NONE | 'N/A | New life extension
guidence needed beyond
40 years. | The effects of special febrication processes on
stress corrowion characteristics must be evaluated.
This section does not apply after the start of plant
operations. | | (101) | | SRP 5.3.1.1.3 | Nondestructive examine-
tions | NONE | NONE | 7 | New life extension document needed? | Special methods for NDE other than those in ASME should be reviewed. | | COMPONENT
COLUMN 1 | ISSUE | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION MEEDS COLUMN 8 | CONVENTS
CONVENTS | |-----------------------|-------------------|---|--|--|--|---|---|--| | (102) | CORROSION (contd) | SRP 5.3.1.1.7 | MOME | HOME | NCME | N/A | New life extension
guidance needed beyond
40 years. | A design valuation of the materials properties of
the reactor vessel fasteners is performed to ensure
resistence to SCC. This section does not apply after
the start of plant operations. | | (103) | | SRP 5.3.1.111.2 | MOME | NOME | NCME | N/A | How Life extension
guidance needed beyond
40 years. | Special manufacturing processes are reviewed for
effects on strees corrosion cracking. This section
does not apply after the start of plant operations. | | (104) | | SRP 5.3.1.111.4 | NONE | MOME | NOME | M/A | New tife extension
guidence needed beyond
40 years. | Special processes used on ferritic and sustenitic stainless steels must be verified to conform to appropriate controls to avoid contamination and semistization that cam increase the possibility of SCC. This section does not apply after the start of plant operations. | | (105) | | ASME Sec 111
NB-2160
NB-3121 | Corrosion allowances are provided. | MOME | Section under review
for life extension
applicability. | W/A | H/A | Intended to cover design, construction and accept-
ance testing of the pressure retaining components.
The scope should be retained. It does not address
aging or life extension. This section does not apply
after the start of plant operations. | | (106) | | ASME Sec XI
IMA-2200
IMA-2300
IMA-2400 | Identifies the rules and requirements for inspection responsibilities, accessibility, examinetion methods, personnel quelifications frequency and records. Minimum basis for all requirements. | MONE | Section X1 under
review for applica-
bility | M/A | W/A | Applies to the pressure retaining components only. The only life externsion application is the design, fabrication, installation and inspection of replacement components. The scope of inspections may need to be broadened to cover erest that were not previously considered. All high stress eres need to be considered. Should be expended to cover visual examination of the RPV exterior for corrosion. | | (107) | | GSI 29 | Cracking and degradation
of bolts and stude from
stress corrosion,
fatigue, boric acid
corrosion and erosion
corrosion. | MOME | MCME | Does the inspection frequency or fraction inspected need to be incressed for extended life. | Further analysis meeded, | Solting degradation or failure in nuclear power
plants - Priority - NIGH - Proposed imspecting 10% of bolts each outage,
extending an outage 1.5 days. | | (108) | | GSI 111 | Stress corrosion cracking | NOME | MONE | Further enelysis needed. | further analysis meeded. | Stress corrosion cracking of pressure boundary ferritic steels in selected environments • Priority LOW • Classified as Licensing Issue | | (109) | | GS1 C-12 | Structural demage by
vibrations of sufficient
magnitude, Fretting dus
to deficient design and
material selection for
anti-vibration bers.
Fatigue failure, partic-
ularly at the nozzle
where stresses are high-
est. | NOME | WONE | NOME. | Further analysis meeded. | Primary system vibrations • Priority RESOLVES | #### APPENDIX III ### REGULATORY INSTRUMENT REVIEW FOR STEAM GENERATOR ## Understanding and managing aging of PWR steam generator tubes - inconel 600 or 690 Materials Tubes Tube Sheet - SA 508 clad with Ni-Cr-Fe alloy (equivelent to S8 168) - SA 285 Gr. C Ferritic SS Type 405 **Tube Supports** Sleeves - Inconel 625 or nickel bonded on outside surface of inconel 600 or 690 - Inconel 600 Plugs Recirculating - Westinghouse, Combustion Engineering Steam Generator Once-Through - Beboock & Wilcox Types Residual stresses, primary coolant chemistry (primarily Stressors hydrogen concentration), secondary coolant chemistry Environment (chlorides, oxygen, copper, sulfates), phosphate chemistry, resin leakage from condensate polisher, brackish water, operating transients temperature, flow-induced vibrations, flow-velocities, and | | Understanding A
(Materials, Stresso
Environmental Inter | rs, and | Managing Aging | | | | | | |-------------------------------------|--|---|---|--|--|--|--|--| | Types | Sites | Aging Concerns | Inservice Inspection, Sur | velllance, and Monitoring | Mitigation | | | | | Recirculating inside Surface | U-bends, roll transition, and dented regions Tube plugs | PWSCC (Pure water SCC) Tubes with low mill-annealing temperature are more susceptible | NRC Requirements Volumetric examination of hot leg side, U-bend portion, and | examination of hot Follow Steam Generator condensate polishers | | | | | | Recirculating
Outside
Surface | Hot-leg tubes in tube-to-
tubesheet crevice region | IGSCC, IQA | (optionally) cold leg side of tubes in recirculating steam congenerators (IWB-2500) | continuous monitoring and control of secondary water chemistry Reduce uncertainties in inspection results and | water and remedy condenser leakage as
quickly as possible
Use shotpeening and rotopeening to
introduce compressive residual stresses
on tube inner surface in the roll
transition region, and anneal
U-bends to | | | | | | Cold leg side in sludge pile or
where scale containing copper
deposits is found | Pitting | once-through steam generators (IWB-2500) Frequency of inspection and number of tubes to be | quentify flaw growth rates Monitor field performance of various sleeve designs | reduce PWSCC Apply nickel plating on the inner surface of the tubes to prevent PWSCC crack initiation and propagation | | | | | | Tubes in tube support regions | Denting | Inspected (minimum of 3% of
all tubes) are determined
by Tech. Specs. (Reg. Guide 1.83) | Perform inservice inspection of tube plugs | Use tube rolling to eliminate tube sheet crevices and use crevice flushing, crevice sikalinity neutralization, sikeline impurity control, seld chloride | | | | | | Inadequately supported tube If dented near the top support plate High-cycle fatigue High | In recirculating steem
generators (standards for
once-through steem
generators are being prepared) | | elimination, hot soeks, studge lencing, pressure pulse, water stap, chemical cleaning, and boric sold additions to control IGA/IGSCC | | | | | | | Contact points between tube Fretting Flaw acceptance criteria determined by Tech Specs. | | Flaw acceptance criteria | | Eliminate copper pickup by use of
titanium or stainless steel condenser
tubes, and replace the copper-bearing
alloys in the feedwater train to reduce
pitting and denting | | | | | | Tubes above tubesheet | Westege | Criterie for determining necessity of plugging degraded tubes (Reg. Guide 1.121) | | Use all-volatile treatment water
chemistry, studge lancing, chemical
cleaning, not soaks, hot blowdown and
flushing, and elimination of hideout
chemical concentration to control
wastage | | | | | Once-Through
Outside
Surface | Tubes | Erosion-corresion
Fatigue | Unscheduled inservice inspection of each steem generator is required when primary to secondary tube | | Use chemistry control to prevent concentration of impurities leading to fatigue crack initiation in once-through steam generators | | | | | | Tubes in upper tubesheet region | Environmental
fatigue | leaks exceed the limits defined in Tech, Specs. | | Use lane-flow blocker in once-through
steam generators to mitigate
environmental fatigue | | | | #### REGULATORY INSTRUMENT REVIEW FOR STEAM GENERATORS | COLUMN 1 | COLUMN S | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS
COLUMN 7 | LIFE EXTENSION MEEDS COLUMN 8 | COMMENTS
COLUMN 9 | |---------------------------|---|---|--|---|---------------------|--|---|--| | STEAM
GENERATOR
(1) | STRESS: VESSEL PROBLEMS *INTERGRAMULAR STRESS CORROSION CRACKING1GSCC *MELOWENTS *FATIGUE *BOLTING TUBE PROBLEMS *IGSCC/SCC *DENTING *FATIGUE *FATIGUE *CREVICES TUBE SHEET | CFRs 10 CFR 50,
Appendix A | Records. | Records indicate
maintenance
problems. | None . | Material Evaluation-
amount of coverage may
need review to assure
adequacy of inspection. | Time intervals and records adequacy. | References ASME Code ISI Requirements. | | (2) | | Appendix B | Quality Assurance. | Proper QA will
assure that ade-
quate and accurate
maintenance records
are recorded and
proper procedures
are followed. | None. | Embrittlement fatigue
Stress. | Improved methods of dataction for sizing cracks and [GA need to be reviewed/researched. | References ASME code for ISI requirements. | | (3) | | T56
3/4.4.5 | ISs requires inspect-
tion for wall penetra-
tions (via any mode of
wall thinning). | None, not addressed. | . None. | Improved inspections
for fretting/denting/
IGSCC are needed. | Depends on the adequacy of Section XI, ISI. | Current inspection technique is eddy current testing of a fraction of tube bundle every 12-26 calender months. No requirement concerning the SG shell or secondary side of the tube bundle. Root-cause analysis requirements for tube usil thinning are not explicitly delineated. Reporting requirements would have to be expended. | | (4) | | 3/4.4.10 | None. | None, not addressed. | . None. | N/A | M/ASection, TSs,
3/4.4.0.5. | This 15 requires ASME, Section XI ISI, Inspections IMA - TSs 3/4.4.0.5. | | (5) | | 3/4.4.0.5
(ASME, Section
XI ISI, inspec-
tions are
required.) | None. | Nome, not addressed. | . None . | Depends on the
adequacy of Section
XI, ISI requirements/
reports vs. aging
needs. | Depends on the adequacy of Section XI, ISI requirements/ reports vs. license renewal needs, | To expand the scope of the required inspec-
tions, the Section XI requirements would have
to be changed or additional requirements
would have to be added to TS 4.4.10 to specify
the types/frequency of inspections and tests
required. (The TSs currently cover the SG tube
test frequency; Section XI doesn't address the
frequency.) See Section XI analysis. | | (6) | | 3/4.4.9.1.1 | Thermal/pressure cycles
are recorded during RCS
heat-up or cool-down
(primary side only). | None, not addressed | . None. | Cycles are recorded. Might be useful in evaluating thermal/ pressure cycle history/severity. | 7 | Does not address rapid SG temperature transients
caused by feedwater/emergency, feedwater transients,
or rapid depressurizations of the secondary side.
However, instances of transients or rapid depres-
surization would be reportable incidents. | General Notes: 1. A **** indicates further study/investigation is needed. 2. For the CSIs, "resolved" means the generic safety issue is resolved, not necessarily the aging issue. 3. For meaning of abbreviations, acronyms, and initialisms, used throughout, see acronyms on page xi, xii, and xiii of the report. | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION MEEDS | COMMENTS
COLUMN 9 | |-----------------------|-------------------|-----------------|---|------------------------------------|--|--|----------------------|--| | (7) | STRESS (contd) | TSa
(All) | | | Section XI SMG on
operating plant
criteria is devel-
oping several new
(normandatory)
appendices to
activess return to
service situations
when component TS
have been exceeded. | | | | | (8) | | SEP8
3.9.1 | General Design Cri-
teria (GDC): design
with sufficient margin.
Also, GDC 1,2,14;
10 CFR 100, Appendix A
and 10 CFR 50,
Appendix 8. | More (except for initial margins). | 7 | None. | 1 | Evaluate transients used in the design and fatigue analysis. | | (9) | | 3.9.3 | Material Integrity. | References ASME
Code. | None. | | | | | (10) | | 5.2.3 | Review suitability of
materials chosen. Per-
form tests (fracture
toughness). Review pro-
cedures of menufacturing
and welding. NOE per
Section III, M8-2000. | None. | | None . | | Covers all reactor coolant pressure boundary. | | (11) | | 5.2.4 | General. | None. | None. | Yes. | | ASME Sec XI requirements may not be adequate
for deterioration. A new Appendix IV updates
ET and may assist in these requirements. | | (12) | | 5.2.1.1 | Must meet 10 EFR
50.55a (i.e., seet
ASME requirements for
pressure boundaries). | Hone. | None, | None. | 7 | Doesn't address specific aging issues; Section III, Class I component design criteria must be followed for pressure boundary. | | (13) | | 5.4.2.1 | Overall Integrity
References ASME. | None. | None, | | | | | (14) | | 5.4.2.2 | References
Regulatory Guide 1.83. | None. | In Rewrite. | Specific information
needs to be complied
with reference to a SG. | | New Guides needed to establish a deterioration overview of component. | | (15) | | 80a
1.83 | | | MUPLEX Codes + Stan-
dards Work. Identify
obvious changes
fatigue MUREG 0313. | Eliminete unintentional
ambedded 40-years con-
straint in MRC Regs and
Codes and Standards. | | MUREG-0313 applies to containment boundary piping,
not to \$G tubes. | | COMPONENT
COLUMN 1 | COLUMN 5
122NE | REG. INSTRUMENT | AGING FEATURES COLUMN 6 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS | CONNENTS
COLUMN 9 | |-----------------------
-------------------|---------------------|--|--|--|-------------|--|---| | (16) | STRESS (contd) | RGs (contd)
1.85 | No explicit reference
to aging; provides an
NRC acceptable list of
approved ASME code
cases for Section III. | The RG assists life
extension by pro-
viding acceptance
method of approved
(ASME) meterials
acceptable to cur-
rent approved Code
Case. | RG revisions are
made to include or
exclude appropriate
Code Case. | H/A | N/A | ASME Code Cases are not mandatory. Code Cases provide a mechanism to use alternate methods within jurisdiction of the code. The cases are usually supersaded (annulled) by revisions to the code, i.e., the case becomes part of the code. In other instances, the case may be reversed or dropped as an applicable method. | | (17) | | 1.121 | Defines stress limits
for flawed tubes, | None. | RG 1.121, Rev. 1,
being developed from
Steam Generator
Integrity Program. | Nond • | Nane. | ASME code margins should be maintained. | | (18) | | 1.147 | No explicit reference
to aging; provides an
NRC acceptable list of
approved ASME code
cases for Section XI. | extension by provid- | RG revisions are made
to include or exclude
appropriete Code Cases. | N/A | M/A | ASME Code Cases are not mendatory. Code Cases provide a mechanism to use alternate methods within jurisdiction of the code. The cases are usually supersaded (annulled) by revisions to the code, i.e., the case becomes pert of the code. In other instances, the case may be reversed or dropped as an applicable method. | | (19) | | ASSE
Section III | | Requalification of components. | A new appendix is under consideration which may be used to regulate components which have exceeded the rules for cyclic operation in Section III, MS-3222.6. A lask Group has been formed to address the issue. This also applies to Section XI. | | Requalification rules for components. | From Attachment III of the Heeting Agenda for ASNE-BNCS (Board Nuclear Codes and Standards) Steering Committee on PiER (p. 8): Codes and standards such as BPV Section VIII for preasure vessels, 831.1 Code for Power Piping, and 816 Valve Standards fall within the jurisdiction of the ASNE Board on Pressure Technology Codes and Standards (BPTCS). Both BNCS and BPTCS report to the ASNE Council on Codes and Standards. Consideration of Section VIII and 831.1 will be under PLEX since they were extensively used in the construction of nuclear power plants prior to the publication of ASNE BAPV Code, Section III. | | (20) | | | Fatigue. | Fatigue curve
revisions. | Section XI SMG on
Operating Plant Cri-
teria is reviewing
fatigue curves in
Section III to
determine if they can
be revised to accom-
modate operation
beyond 40 years. | | Improved End-of-Life
projections, 40 years
and beyond. | Studies are under may to assess the magnitude of the effects of actual environmental conditions. Code curves are based on amooth apacisams in air at room temperature, whereas materials in service have much rougher surfaces and are apposed to flowing coolant at operating temperatures. The actual surfaces are more prone to crack initiation. Studies and research to assess magnitude of effect of environmental factors could result in need for new Reg. Guide, Reg. Instruments and/or Code revisions. | | COMPONENT
COLUMN 1 | JSSUE
COLUMN 2 | AEG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION MEEDS | COLUMN 9 | |-----------------------|-------------------|--|--|---|---|---|--|--| | (21) | BTRESS (contd) | ASME (contd)
Subsection
MS
MC
MF | ASME Code provides requirements for design, 4.g., pressure, temperature and mechanical loads, to assure the strength and integrity of the pressure boundary. | None explicit; yet
provides guidance
and sets forth
rules for repairs
and replacements
of code components. | | Implied in the design
design criteria (see
comments). | Guidence is needed to
cover the limits of
component deterioration. | For Class I components, ASME Code requires special consideration for material subject to thirming by corrosion, erosion, mechanical abrasion, or other environmental effects and shall have provisions made for the effects during the design or specified life by a suitable increase in or addition to the thickness of the base mutal over that determined by the design. Rules cover design and construction require- | | (22) | | Section XI | Condition Assessment. | Requelification of systems and components. | Consideration of
development of "new"
Article 1WK-8000,
Requalification for | Condition Assessment
Information/Deta. | Requelification
of systems and
components follow-
ing expiration of | ments but do not cover deterioration. | | (23) | | | TSs have been exceeded. | | "Fatigue Life." SIG on Operating Plant Criteria developing several new normandatory appandices to actives return to service aituations when component IS have been exceeded. | | operating license. | | | (24) | | 1W8-3510 | Acceptance Standards. | Acceptance
Standards. | None. | Hone. | Code evaluation limits
for allowable indica-
tions of dateriors- | Present rules limit power but do not specify
the number of defective tubes that a steam
semerator can contain before replacement is | | (25) | | INB-3512 | Acceptance Standards. | Acceptance
Standards. | None. | Hone. | tion should be
determined. | required. | | (26) | | IW8-3516 | Acceptance Standards. | Acceptance
Standards. | None. | Mone. | | | | (27) | | INB-3519 | Acceptance Standards. | Acceptance
Standards. | None. | None. | | | | (26) | | IVR-3520 | Acceptance Standards. | Acceptance
Standards. | None. | None. | | | | (29) | | 1WB-2500 | None. | None. | Regulatory Guide 1.83. | . Yes. | lacue new Regulatory
Guide 1,83. | 3% inspection is not adequate and full length is needed (tube sheet to tube sheet). Current | | (30) | | 1va-3521 | Number of plugged or replaced tubes. | Number of plugged or replaced tubes. | • | | Allowable indication
for U-band flow is now
40% through-well.
Growth rate augments
this is too high. | rules require sequential ISI, if flau(s) are detected, i.e. if something is found simple size is increased. Musher of tubes plugged in a steam generator could influence license renawal. | | COMPONENT
COLUMN 1 | ISSUE | REG. INSTRUMENT | AGING FEATURES
COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS
COLUMN 8 | COMMENTS
COLUMN 9 | |-----------------------|----------------|--|--|----------------------------------|--|---|--------------------------------------|---| | (31) | STRESS (contd) | ASME (contd)
IMB-2413,
IMB-2430, | None. | None. | | Yes. | | Should have increased examination program after detection of flamm: 3-1/2 years between examinations is now permitted. | | (32) | | 1WB-3630 | Nane, | | Rewrite of Regula-
tory Guide 1.83. | | Detection and sizing of SCC and IGA. | States that evaluation of cracks or IGA,
etc.,
shall be performed by analysis acceptable to
regulatory authority. | | (33) | | Appendix IV | None, | None. | | | | Appendix IV rewrite in process. | | | | | | | | | | This section of ASME (Section XI) may be
transferred to Section V. Section XI will be
replaced with a performance demonstration and
qualification guideling. This is in the
process of being written now but could take
two years. | | (34) | | 651s | Failures of partially
degraded stemm gen-
erator tubes. | None. | None. | 7 | None. | Steem-line Break with Consequential Small LOCA * Implemented with TMI action plan Item 1.C.1 of MMREG-0737. * Supplemented by MRC Generic Letter No. 82-33. | | (35) | | 29 | Cracking and degradation
of bolts and stude from
stress corresion,
fatigue, boric acid
corresion, and erosion/
corresion. | None. | None. | Does the inspection
frequency or fraction
inspected need to be
increased for extended
life? | 7 | Bolting Degradation or Failure in Muclear
Power Plants * Priority - HIGH * Proposed Inspecting 10% of bolts each
outage, extending an outage 1.5 days. | | (36) | | 35 | Loose objects in
secondary piping could
become missiles during
steem generator bloudown
and rupture one or more
tubes. | None. | Hone . | Determine whether
priority of the issue
charges for longer
plant life. | 7 | Degradation of Internal Appurtenances in LWRs * Related to B-60 * Priority - LOW. | | (37) | | 66 | Mitigate or reduce
steem generator tube
degradations and
ruptures. | Norm. | None. | 7 | ? | Steem Generator Requirements
* Priority - HIGH. | | (38) | | 67 | 7 | None. | None. | 7 | 7 | Steam Generator Staff Actions * Priority - LOW. | | (39) | | 111 | Stress corrosion crack-
ing in steam generator. | None. | None. | 7 | 7 | Stress corrosion cracking of pressure boundary ferritic steels in selected environments. | | COMPONENT | ISSUE | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION
FEATURES | CURRENT INITIATIVES | AGING MEEDS | LIFE EXTENSION MEEDS | COMMENTS | |-----------|----------------|---------------------|---|----------------------------|---------------------|-------------|---|--| | COLUMN 1 | COLUMN 2 | COLUMN 3 | COLUMN 4 | COLUMN 5 | COLUMN 6 | COLUMN 7 | COLUMN 8 | COLUMN 9 | | (40) | STRESS (contd) | 651s (contd)
A-3 | Steem generator tube
integrity degraded due
to westage and atress
corrosion cracking. | Mone. | Hone, | ? | , | Nestinghouse Steam Generator Tube Integrity * See MUREG-0371, * Degradation decreased by conversion from phosphate to an all-volative water treatment. Denting which leads to primary side stress corrosion continues to be a problem. | | (41) | | A-4 | Steem generator tube
integrity degraded due
to wastege and stress
corrosion cracking. | Hone. | None. | 7 | 7 | CE Steem Generator Tube Integrity * See MUREC-0371. * Degradation decreased by conversion from phosphate to an all-volatile water treatment. Denting which leads to priseny-side stress corrosion continues to be a problem. | | (42) | | A-5 | 7 | None, | None. | 7 | 7 | SEW Steem Generator Tube Integrity
* See MUREG-0371. | | (43) | | A-12 | Lamellar tearing and low
fracture toughness of
steam generator and
reactor pump support
materials. | Hone. | None. | 7 | 7 | Fracture Toughness of Steem Generator and
Reactor Coolant Pump Supports * Solution made available in October 1983
with publication of MURES-0577. * Applies to new construction when SRP,
Section 5.3.4 is issued. | | (44) | | A-15 | Operation of LWR results
in slow corrosion of
interior metal surfaces
of the primery coolant
system. These are
activated by neutron
flux when circulated
through reactor and
plate-out. | Mone. | None. | 7 | 7 | Primary coolant system decontamination and steam generator chamical cleaning. | | (45) | | US1A-47 | Define generic criteria
for plant specific
reviews for stemme
generator overfill
transients in PAMs and
reactor overfills in
BARS. | | | | | Safety Implications of Control Systems * Need to address supture of instrument sensing lines. | | (46) | | 8-60 | Presence of loose object
in prisery coolant sys-
tem can be indicative
of degraded reactor
safety system resulting
from failure or weeken-
ing component. | Hone. | Norse . | 7 | Perform trend enelysis
on loose part monitor-
ing data. | Loose Part Monitoring System Priority - RESOLVED. | | CCMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|---|--|---|--|---------------------|--|--|--| | (47) | STRESS (cantd) | AMS
3.2 | None. | Review of plant
procedures/records
could give insight
into deterioration. | tione. | None. | None. | Quality Assurance documentation and/or records
are required to show and evaluate deteriora-
tion of a component, | | (48) | | 5.37 | None. | Review of plant
procedures/records
could give insight
into deterioration. | None. | lione. | None. | | | (49) | | 5.3.10 | None. | Review of plant
procedures/records
could give insight
into deterioration. | None. | None. | None. | | | (50) | DYNAMIC EFFECTS * VIBRATION * THERMAL CYCLES * EROSION | CFRs
10 CFR 50,
Appendix A | Records. | Yes. | None. | Material Evaluation. | Interval between
exams need to be
reviewed. | References ASME Code for ISI. | | (51) | | Appendix B | Quality Assurance. | Yes. | None. | Embrittlement Fetigue
Stress. | Hethods of detecting
and sizing cracks
and 16A need to be
reviewed. | References ASME Code for ISI, | | (52) | | TSs
3/4.4.5 | IS requires eddy
current testing of
tubes that could
indicate tube erosion
(shell not addressed). | None, not
addressed. | None. | Inspect secondary
side of tubes for
vibration (fretting)
and shell erosion). | Reports from inspec-
tions could be used
to evaluate tube ero-
sion conditions,
though root-cause
analysis may be
lacking. | Eddy current testing finds well thinning but not necessarily the mode of thinning unless the utility inclused this in its corresponding report of the inspection to the NRC. Only a fraction of the total number of tubes are required to be inspected during an outage. | | (53) | | 3/4.4.10
4.0.5
ASME Code Class
Maintenance
Committee | None. | None, not addressed. | None. | N/A | Depends on adequacy of
Section XI 181 require-
ments and other
requirements already
in place. | IS 4.4.10 defers to T.S. 4.0.5 which specifies that the ASME, Section XI, requirements are applicable. See Section XI analysis. | | (54) | | 3/4.4.9.1.1
RCS heat-up/
cool-down | Thermal cycles are
recorded during RCS
heat-up and cool-down. | None, not
addressed. | None. | The thermal cycles are recorded and retained. Perhaps useful in evaluating cycle history/severity. | 7 | Does not address rapid 50 temperature
transients caused by feedwater/emergency
feedwater transients (e.g., transients
associated with feedwater/emergency feedwater
50 over-feeding or rapid loss at feedwater
preheating). | | COMPONENT
COLUMN 1 | ISSUE
COLUM 2 | REG. INSTRUMENT | AGING FEATURES
COLUMN 6 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING MEEDS
COLUMN 7 | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|----------------------------|--|--|---|---|---|---|---| | (55) | DYMANIC EFFECTS
(contd) | 5RPs
3.9.2 | Review of the criteria,
testing
procedures, and
dynamic analysis. | None. | 7 | None. | 7 | Assure structural and functional integrity under vibratory loading. | | (56) | | 3.9.3 | Material Integrity. | Ref. ASME. | None. | Complete and reliable data base. | Complete and reliable data base. | | | (57) | | 5.2.4 | General. | None. | None. | Yes. | | ASME Sec XI requirements may not be adequate for deterioration. | | (58) | | 5.2.1.1 | Must meet 10 CFR 50.55a
. (i.e., meet ASME Section
III requirements for
pressure bounderies). | Mone. | None. | Hone. | • | Doesn't address specific issues; Section III must be followed. | | (59) | | 5.4.2.1 | Overall integrity,
References ASME. | Norse. | None. | | | | | (60) | | 5.4.2.2 | References
Regulatory Guide 1.83. | None. | In Rewrite. | Yes. | | New Guides needed to establish a deterioration
overview of component. | | (61) | | RGs
1.121 | Defines dynamic loading considerations governing tube failure, | Limited. | RG 1.121 limited to tube integrity. | Consideration of other
structural degradation,
i.e., vessels. | Long-term failure
resistance of SG wessel. | | | (62) | | 1,147 | No explicit reference
to aging; provides an
NRC acceptable list of
approved ASME code
cases for Section XI. | The RG assists life extension by providing acceptance sethod for approved (ASME) inspection sethods using current Code Cases. | | N/A | M/A | ASME Code Cases are not surdatory. Code Cases provide a sechanism to use atternate methods within jurisdiction of the code. The cases are usually superseded (amulted) by revisions to the code, i.e., the case becomes part of the code. In other instances, the case may be reversed or dropped as an applicable method. | | (63) | | 1.85 | No explicit reference
to aging; provides an
NPC acceptable list of
approved ASME code
cases for Section III. | extension by provid- | RG revisione are mode
include or exclude
appropriate Code Cases | ₩/A | M/A | ASME Code Cases are not mendetory. Code Cases provide a mechanism to use atternate methods within jurisdiction of the code. The cases are usually superseded (annulled) by revisions to the code, i.e., the case becames part of the code. In other instances, the case may be reversed or dropped as an applicable method. | | (64) | | AGME
Section III,
Subsection
NB
MC
MF | ASME Code provides requirements for design, e.g., pressure, temperature and mechanical loads, to assure the strength and integrity of the pressure boundary. | None explicit; yet,
provides guidance
and sets forth
rules for repairs
and replacements
of code components. | | Implied in the design
design criteria (see
comments). | Guidance is needed to
cover the limits of
component deteriors-
tion. | for Class I components, ASME Code requires special consideration for saterial subject to thinning by corrosion, erosion, sechanical abrasion or other environmental effects and shall have provisions sade for the effects during the design or specified life by a suitable increase in or addition to the thickness of the base satal over that determined by the design. Rules cover design and construction requirements but do not cover deterioration. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|----------------------------|----------------------------|---|---|---|-------------|--|---| | (65) | DYNAMIC EFFECTS
(contd) | ASME (contd)
Section XI | Corrosion and Erosion. | | A new SMG on pipe walt-thinning has been established and will review this issue with EPRI. Nain area of concern at this time is the effects of erosion/ corrosion on piping in non-nuclear applications ANSI/ASME a31G-1964, Harusl for Determining the Remaining Strength of Corrosed Pipelings. | | | The Section XI Subgroup on Nondestructive Examination is currently developing a "Code Case" and normandatory appendix on Ultrasonic Detection and Heasurement of Erosion/Corrosion. AMSI/ASME B-31.6 may have a limited application to nuclear facilities. | | (66) | | IW8-2500 | None. | None. | Rewrite of Regulatory
Guide 1.83. | Yes. | Issue new Regulatory
Guide 1.83. | 3% inspection is not adequate and full length
is needed (tube sheet to tube sheet). Current
rules require sequential ISI, if flaw(s) are | | (67) | | 1 48 -3510 | Acceptance Standards. | Acceptance
Standards. | Norse. | Mone. | Evaluation and guides
for allowable indica-
tions and deteriora-
tion limits should be
determined. | detacted, i.e., if something is found, sample
size is increased. (The tube sampling is set
by the YSs, not by Section XI.)
Present rules limit power but do not specify
the number of defective tubes that a steam
generator can contain before replacement is
necessary. | | (68) | | 1MB-3515 | Acceptance Standards. | Acceptance
Standards. | None. | None. | | | | (69) | | IW8-3516 | Acceptance Standards. | Acceptance
Standards. | None. | Nome. | | | | (70) | | 1W8-3519 | Acceptance Standards. | Acceptance
Standards. | None. | -None. | | | | (71) | | tus-3520 | Acceptance Standards. | Acceptance
Standards. | None. | None. | | | | (72) | | IW8-3521 | Number of plugged or
replaced tubes. | Number of plugged
or replaced tubes. | | | Allowable indication
for U-band flaw is
40% through-wall;
growth rate suggests
this is too high.
This may not be con-
servative enough, i.e.,
all indications of a
flaw should require
plugs. | Number of tubes plugged in a steam generator could influence license renewel. | | COMPONENT
COLUMN 1 | 189UE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION MEEDS | COLUMN 9 | |-----------------------|----------------------------|-----------------------------------|---|----------------------------------|-----------------------|-------------|--|--| | (73) | DYMANIC EFFECTS
(contd) | ASME (contd)
1MB-2413,
2430 | Mone. | None. | | Yes. | | Should have increased examination program
efter detection of flams: 3-1/2 years between
examinations is now possible. | | (74) | | 198-3630 | None. | | Regulatory Guide 1.83 | | Yes, detection and
sizing of SCC and IGA. | States that evaluation of cracks or IGA, etc.,
shall be performed by analysis acceptable to
regulatory authority. | | (75) | | Appendix IV | None. | None. ' | | | | Appendix 1V rewrite in process. | | | | | | | | | | This section of ASME (Section XI) may be transferred to Section V. Section XI will be replaced with a performance demonstration and qualification guideline. This is in the process of being written now but could take two years. | | (76) | | 651 s
18 | 7 | None. | Hone. | 7 | 7 | Stemp-line break with consequential small LOCA. | | (77) | | 35 | Loose objects in secondary piping could become missites during stems generator blowdown and rupture one or more tubes. Presence of loose objects implies a system has failed. | Hone. | None. | 7 | 7 | Degradation of Internal Appurtenances in LURs * Priority - LOW. | | (78) | | 60 | Lameliar tearing
represents a reduction
in toed a joint could
handle, perticularly
under emergency condi-
tions auch as seismic
conditions. | Hone. | Mone. | 7 | , | Lameliar Tearing of Reactor System Structural supports * is a subtask under A-12. | | (79) | | 66 | Hitigate or reduce
stemm generator tube
degradations and
ruptures. | Hone. | Hone. | 7 | , | Steem Generator Requirements * Four Items Priority - NIGH. | | (80) | | 67 | ? | None. | None. | 7 | 7 | Steam Generator Staff Actions * Priority - LCW. | | (81) | | A-3 | Hane. | Mone. | Mane. | 7 | 7 | Westinghouse Steam Generator Tube Integrity * See MEMEG-0371. | | COLUMN 1 | 15SUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION MEEDS | COMMENTS
COLUMN 9 | |----------|----------------------------|---------------------|---|--|---------------------|-------------|----------------------
---| | (82) | DYNAMIC EFFECTS
(contd) | GISE (contd)
A-4 | Nane. | None. | None. | , | 7 | CE Steam Generator Tube Integrity * See MURES-0371. | | (83) | | A-5 | Tube cracks of unknown
origin propagated in
the circumferential
direction by flue-
induced vibrations.
Erosion cavitation
phenomens. | None. | None. | ? | 7 | BAW Steem Generator Tube Integrity
* See MUREG-0371. | | (84) | | A-12 | Lameliar tearing and tou-
fracture toughness of
steam generator and
reactor pump support
materials. | None. | Name. | 7 | 7 | Fracture Toughness of Steem Generator and
Reactor Coolant Pump Supports * Solution made available in October 1963
with publication of BUREG-0577. * In the case of North Anna, licensee agreed
to raise temperature above 225°f before
pressurizing above 1000 PSI. | | (85) | | USIA-47 | Contribution of control
system failures result-
ing in overfilling
transients and pres-
surized thermal shock, | None. | None. | 7 | 7 | Safety Implications of Control Systems. | | (86) | | B-60 | Presence of Loose
object in primary
coolant system can be
indicative of degraded
reactor safety system
resulting from failed
or weekened component. | None. | Hone. | 7 | 7 | Loose Part Monitoring System * Priority - RESOLVED. | | (87) | | AIRS
3.2 | Name. | Review of plant
procedures/records
could give insight
into deterioration. | tions. | None . | None. | Quelity Assurance documentation and/or records
are required to show and evaluate deteriora-
tion of a component. | | (88) | | 5.37 | None. | Review of plant
procedures/records
could give insight
into deterioration. | None. | None . | liane. | | | (89) | | 5.3.10 | None. | Review of plant
procedures/records
could give insight
into deterioration. | None. | None. | None. | | | COMPONENT
COLUMN 1 | 15SUE
COLUMN 2 | REG. INSTRUMENT | AGUNG FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING WEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|--|----------------------------------|--|---|------------------------------|--|--|---| | (90) | STRUCTURAL INTEGRITY PRACTURE TOUGHNESS MERITTLEMENT HERMAL SEISHIC (DAMAGE) FAILURES | CFRs
10 CFR 50,
Appendix A | Records. | Yes. | Hore. | Meterial Evaluation. | Intervels between
exams need to be
reviewed. | References ASME for ISI. | | (91) | | Appendix A,
Criterion 2 | Design base for pro-
tection of equipment
frem natural phenomena
including components
important to safety. | Hone explicit; pro-
vides direction to
use most severe
known historical
phenomene for the
design, i.e., this
conservative design
base. | Home. | Generic and specific
design(s) must meet
current and known
netural phenomena. | Design must meet current
design criteria for the
phenomena. | Regulation should be updated to reflect
life extension options and the option
to evaluate nuclear facilities for
plant aging. | | (92) | | Criterion 51 | Home explicit/ stipulates Reactor Pressure Boundary to be designed to include considerations (suf- ficient margins/factor of safety) for pressure containment under oper- ating, testing, and postulated accident conditions such that the pressure boundary ferritic materials behave in a norbrittle manner. | None explicit; im-
plied by the dealgn
if the ferritic
material continues
to show non-brittle
properties. | stone. | Methods to measure embrittled properties. | Improved NDE techniques
to determine embrittle-
ment properties, | Regulation criteria needs updating to feeture life extension applications. | | (93) | | Appendix 8 | Quelity Assurance. | Yes. | Hone. | Embrittlement Fatigue
Stress. | Provide audits/records of
methods of detection
and sizing cracks
and 10A. | References ASME Code for 121 requirements. | | (94) | | TSa
3/4.4.5 | W/A | None, not addressed. | None, | N/A | 7 | TS requires periodic eddy current testing of SG U-tubes. | | (95) | | 3/4.4.10 | None. | Hone, not
addressed. | Mone. | M/A | 7 | This TS requires ISI ASME, Section IX. If Section XI is not adequate, and the TSs are to be expanded, this may be where the revisions should occur. | | (96) | | 3/4.4.7.9 | Requires periodic
testing of snabbers
associated with the
SG and piping. | Mone, not addressed. | Mone. | | | This T3 is limited with reference to the seismic issue, i.e., seismic monitoring of the site is required. No other references are made. In addition, periodic testing of the SG anabhers does not occur. The utilities are unable to do so. | | COMPONENT COLUMN 1 | ISSUE COLUMN 2 STRUCTURAL INTEGRITY (contd) | REG. INSTRUMENT
COLUMN S
TSE (ALL) | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 Working Group on Operating Plant Cri- teria, a proposed addition to Article 1M8-3000 of Section XI. Would contain rules and formules for performing an evaluation of a com- ponent's fitness for continued service when either TSs or elements of its con- struction/design limitations had been exceeded. | AGING MEEDS
COLUMN 7 | LIPE EXTENSION MEEDS
COLUMN S | COMMENTS
COLUMN 9 | |--------------------|---|--|---|---|--|-------------------------|----------------------------------|---| | (98) | | SRPs
3.9.3 and
3.9.3
Appendix A | Material Integrity
Reference to ASME
Section III and GDC
1,2,4,14,15. | Reference ASME.
None (except for
original design
margins). | None. | None. | | Loading combinations, system operating transients, and stress limits. | | (99) | | 5.2.3 | Review suitability of
materials chosen. Per-
form tests (fracture
toughness). Review pro-
cedures of manufacturing
and welding. MDE test-
ing as per Section III,
MB-2500. | None. | None. | | | Covers all reactor coolant pressure boundary. | | (100) | | 5.2.4 | Require ISI Program
of RCPB (GDC-32) to
assess structural and
leak-tight integrity. | None. | 7 | 7 | 7 | Based on requirements of 10 CFR 50.55e and detailed in ASME, Section XI. | | (101) | | 5.2,1,1 | Nust meet 10 CFR 50.55a
(i.e., meet ASME Sec-
tion III requirements
for pressure bounderies). | None . | lione. | None. | 7 | Doesn't address specific issues; Section III must be followed. | | (102) | | 5.4.2.1 | Overail Integrity Neet GDC 1,14,15,31 and 10 CFE SO, Appandix A. Have sufficient design mergin. Review selec- tion and fabrication of materials. Must meet ASME code. | None. | None - | | | To meet the GDC 1, the acceptable materials are specified in Section III, Appendix I, Section III, Appendix I, Section III, Parts A, B, C. Must also meet RG 1.85. To seet GDC 1,14, and 31, the fracture toughness must meet 10 CFR 50, Appendix G, and Section III MB-2300 and ASME, Appendix G G-2000. For welding, see ASME Code Sections III and IX. | | (103) | | 5.4.2.2 | Reference, Regulatory
Guide 1.83. | None. | Rewrite in process. | Yes. | | New guides needed to establish a deterioration overview of component. | . | CONFORMENT
COLUMN 1 | COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING MEEDS COLUMN 7 | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |------------------------|---------------------------------|---|--|--
--|---|--|--| | (104) | STRUCTURAL INTEGRITY
(contd) | RGs
1.121 | Defines methods for
calculating minimum
acceptable tube unli
thickness. | Linited. | RG 1.121 limited to tube integrity. | Consideration of other structural degradation, i.e., vessels. | Long-term failure resistance of SG vessel. | | | (105) | | 1.147 | No explicit reference
to aging; provides an
NRC acceptable list of
approved ASNE code
cases for Section XI. | extension by provid- | RG revisions are made
include or exclude
appropriate Code Cases | W/A
- | M/A | ASPE Code Cases are not mendatory. Code Cases provide a suchanism to use alternate methods within jurisdiction of the code. The cases are usually superseded (annulled) by revisions to the code, i.e., the case becomes part of the code. In other instances, the case may be reversed or dropped as an applicable method. | | (106) | | 1.65 | No explicit reference
to eging; provides an
MRC acceptable list of
approved ASME code
cases for Section III. | extension by provid- | RG revisions are made
to include or exclude
appropriate Code Cases | N/A | н/А | ASNE Code Cases are not mandatory. Code Cases provide a sechanism to use alternate methods within jurisdiction of the code. The cases are usually superseded (aroutled) by revisions to the code, i.e., the case becomes part of the code. In other instances, the case may be reversed or dropped as an applicable method. | | (107) | | ASSME
Section [1],
Subsection
MS
MC
MF | ASME Code provides requirements for design, e.g., pressure, temperature and sechanical loads, to assure the strength and integrity of the pressure boundary. | None explicit; yet
provides guidance en
and sets forth rutes
for repetrs and
replacements of code
components. | | Implied in the design
criteria (see comments). | Guidance is needed
to cover the limits
of component
deteriortion. | For Class I components, ASME Code requires special consideration for material subject to thirming by corrosion, erosion, mechanical abrasion or other environmental effects and shall have provisions made for the effects during the design or specified life by a suitable increes in or addition to the thickness of the base metal over that determined by the design. Bules cover design and construction require- | | (108) | | IV8-3510 | Acceptance Standards. | Acceptance
Standards. | Mone. | None. | Evaluation and Guide
for allowable indica-
tions and deteriora-
tion lists should be
determined. | ments but do not cover deterioration. Present guides limit power but do not specify the number of defective tubes that a steam generator can contain before replacement is required. | | (109) | | 198-3512 | Acceptance Standards. | Acceptance
Standards. | None. | Mone. | | | | (110) | | IV8-3516 | Acceptance Standards. | Acceptance
Standarde. | None. | None. | | | | COMPONENT
COLUMN 1 | ISSUE COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION NEEDS | CONNENTS
COLUMN 9 | |-----------------------|---------------------------------|---------------------------|--------------------------------------|--|------------------------|-------------|--|--| | (111) | STRUCTURAL INTEGRITY
(contd) | ASME (contd)
JUNE-3519 | Acceptance Standards. | Acceptance
Standards. | None. | None. | | | | (112) | | IM8-3520 | Acceptance Standards. | Acceptance
Standards. | Norm. | tione. | | | | (113) | | IM8-2500 | None. | None. | Regulatory Guide 1.85. | Yes. | issue new Regulatory
Guide 1.83. | | | (114) | | 1MB-3521 | Number of plugged or replaced tubes. | Number of plugged
or replaced tubes. | | | Allowable indication
for U-band flaw is now
40% through-wall.
Growth rate suggests
this is too high. | Number of tubes plugged in a steam generator
could influence license renewal. | | (115) | | IMR-2413,
2430 | None. | lione. | | Yes. | | Should have increased examination program after detection of flams: 3-1/2 years between examinations is now possible. | | (116) | | (W2-3630 | None. | | Regulatory Guide 1.83. | | Yes, detection and sizing of SCC and IGA. | States that evaluation of cracks or IGA, etc.,
shall be performed by enalysis acceptable to
regulatory authority. | | (117) | | Article IV | Name. | lione. | | | | Regulatory Authority has been rewritten and is in final stage. | | | | | | | | | | This section of ASMC (Section XI) may be transferred to Section V. Section XI will be replaced with a performance demonstration and qualification guideline. This is in the process of being written now but could take two years. | | (118) | | AMS
3.2 | Nane. | Review of plant
procedures/records
could give insight
into deterioration. | None. | None. | None. | Quality Assurance documentation and/or records
are required to show and evaluate deteriora-
tion of a component. | | (119) | | 5.37 | None. | Review of plant
procedures/records
could give insight
into deterioration. | None. | None. | None. | | | (120) | | 5.3.10 | Nane. | Review of plant
procedures/records
could give insight
into deterioration. | None. | None. | Mone. | | | COMPONENT
COLUMN 1 | 189UE
COLUMI 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING WEEDS | LIFE EXTENSION NEEDS | COLUMN 9 | |-----------------------|---|-----------------------------------|---|----------------------------------|------------------------------|---|--|---| | (121) | CORROSION MATER CHEMISTRY MINEURITIES INTERGRANALAR ATTACK (19A) IRRADIATION EN- HANCES EFFECTS (INCREASED RADIO- LYTIC DECOMPOSI- TION OF MATER AND COMPOSIST IM. EAX- AGE INFLUENCES MATER CHEMISTRY) MATER CHEMISTRY) | CFRs 10 CFR 50 10,
Apperulix A | Records. | Yes. | Mone. | Meterial Evaluation, | Interval between exams needs to be reviewed, | References ASME for ISI requirements. | | (122) | | Appendix 8 | Quelity Assurance. | Yee. | Hone. | Embrittioment Fatigue
Stress. | Methods of detection
and sizing for cracks
and IGA meed to be
revised. | | | (123) | | The
3/4.4.5 | Eddy current testing
could detect well thin-
ning due to chemistry
problems. | Hone, not addressed. | None. | Inspection
reports could be expended to look at SG materials for chemistry-specific issums. | Inspection reports
might be useful for
renewal criteria
review if requirements
for reports were made
more specific. | This TS requires eddy current testing of SG U-tubes. ICA effects on U-tube well thickness could be detected though the cause is not necessarily inferred. Reporting requirements would have to be expended. | | (124) | | 3/4.4.10
4.05 | Requires ASME,
Section XI, require-
ments for SGs. | Hone, not
addressed. | Hone. | N/A | Depends on whether
reports/records of
ASME, Section XI, are
adequate to be useful. | This IS requires the requirements of IS 3/4.4.0.5 (ASME, Section XI, ISI) be applied to SG. | | (125) | | 3/4.4.4.7 | Requires primary coolent
(RCS) chemistry control. | Hone, not
addressed. | None. | N/A | Primary side chemistry
analysis records are
retained. Perhaps
useful in evaluating SG
history with repard
to chemistry of fluid
(RCS). | CENERAL CORROSION NOTE: Technical Specifications do not address secondary (steam plant side) chemistry control at all. This is shere chemical attack of U-tubes would seem the most likely. Therefore, especially for old 95s, secondary chemistry and its bearing on U-tube integrity would be of great importance. (Secondary side chemistry is administratively controlled but not by TSs) Limits placed on Cl. F, and dissolved oxygen. Are these adequate? Steady State Parameter Limit Transient Limit (dissolved 0.9)* < 0.10 ppm <1.00 ppm (Cl.) < 0.15 ppm <1.50 ppm <1.00 ppm 1.00 | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLLINI 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|-------------------|--|--|---|--|---|--|---| | (126) | CORROSION (contd) | 529e
3.9.3 | Material Integrity. | References ASHE. | None. | | | | | (127) | | 5.2.3 | Corrosion. | None. | None. | | Yes. | Covers construction only. | | (128) | | 5.2.4 | General. | None. | None. | Yes. | | ASME Sec XI requirements may not be adequate for deterioration. | | (129) | | 5.2.1.1 | Nust meet 10 CFR 50.55a
(i.e., meet ASME Sec-
tion III requirements
for pressure boundaries). | None. | None. | Mone. | 7 | Doesn't address specific issues; Section III must be followed. | | (150) | | 5.2.4.1 | Must meet GDC 1,14,15,
and 31 of 10-FR-50,
Appandix A. The design
must have sufficient
mergin. Requires review
selection and fabrication
of materials. Practure
prevention criteria must
be satisfied. | None, | | None. | 7 | To meet the GDC 1, the acceptable materials are specified in Section III, Appendix 1, Section III, Parts A,B,C. Must also meet Regulatory Guide 1.85. For welding, see Sections III and IX. To meet corrosion-resistance, see Section IX, Part QM, Articles 1, 11, 111 and IV, Reference BTP MTES 5-3 (Water Chemistry for Steem Generators). | | (131) | | BTP NETS 5-3 | Maintain water chem-
istry. Guides to
design to prevent
studge build-up. | Maintaining "good"
water chemistry. | 7 | 7 | 7 | Actually mentions "long-term reliable operation." Reference Regulatory Guide 1.37. | | (132) | | 5.4.2.2 | Reference Guide 1.83. | None. | Rewrite in process. | Yes. | | New Guides need to establish a deterioration overview of component. | | (133) | | 10.4.8 | Steem generator blow-
down system review
design basis. GDC 14:
secondary water
chemistry. | Hone. | 7 | None, | ? | Review only initial design of the system. | | (134) | | RG
1.121 | Degradation growth
allowance included in
minimum tube wall
determination. | Limited. | Revision of RG 1.121
partially addresses
degradation growth
allowences for tubes. | Better definition of
degradation growth
rates needed for
specific defects. | Better models of degra-
detion growth needed to
protect remaining tube
integrity. | Available data from eccelerated leboratory tests. May not be useful for predicting SG performance. | | (135) | | ASME
Section III,
Subsection
Ne
NC
NF | ASME Code provides requirements for design, e.g., pressure, temperature and mechanical loads, to assure the strength and integrity of the pressure boundary. | None-explicit; yet
provides guidence
and sets forth
rules for repairs
and replacements of
code components. | | Implied in the design
design criteria (see
comments). | Guidance is needed to
cover the limits of
component deteriora-
tion. | For Class I components, ASME Code requires special consideration for material subject to thirming by corrosion, erosion, mechanical abrasion or other environmental effects and shall have provisions made for the effects during the design or specified life by a suitable increase in or addition to the thickness of the base matal over that determined by the design. Rules cover design and construction requirements but do not cover deterioration. | | CONTROLLING 1 | COLUMN S
Issne | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |---------------|-------------------|--|-----------------------------|----------------------------------|------------------------------|-------------------------|---|---| | (136) | CORROSION (contd) | ASME (contd)
Section XI
IMB-3510 | Acceptance Standards. | Acceptance
Standards. | Mone. | Mone. | Evaluation and Guide
for allowable indica-
tions and deteriors-
tion limits should be
determined. | Present guides limit power but do not specify
the number of defective tubes that a steam
generator can contain before replacement is
required. | | (137) | | IMB-3512 | Acceptance Standards. | Acceptance
Standards. | None, | None. | | | | (138) | | 1 48 -3516 | Acceptance Standards. | Acceptance
Standards. | lione. | None. | | | | (139) | | IUR-3519 | Acceptance Standards. | Acceptance
Standerds. | None, | None. | | | | (140) | | 198-3520 | Acceptance Standards. | Acceptance
Standards. | None. | None. | | | | (141) | | 1V8-2500 | Hone. | None. | Regulatory Guide
1.83. | Yee, Guide 1.83. | Issue new Regulatory
Guide 1.83. | 3% inspection is not adequate and full length
is needed (tube sheet to tube sheet). Current
rules require sequential ISI, if flam(s) are
detected. i.e., if something is found, sample
size is incressed. | | (142) | | IVB-3521 | Number of tubes
plugged. | Number of tubes
plugged. | | | Allowable indication
for U-band flaw is now
40% thru wall; growth
rate suggests this is
too high. | Amount of tubes plugged in a steam generator could influence license renewal. | | (143) | | 1 48-2413,
2430 | None. | None. | | Yes. | | Should have increesed examination program after detection of flams: 3-1/2 years between examinations is now possible. | | (144) | | IV8-3630 | None. | | Regulatory Guide
1.83. | | Detection and sizing of SCC and IGA. | States that evaluation of cracks or IGA, etc., shall be performed by analysis acceptable to resulatory authorization. | | (145) | | Appendix 1V | None. | None. | | | | Appendix IV rewrite in process. | | | | | | | | | | This section of ASME (Section XI) may be
transferred to Section V. Section XI will
contain performance demonstration and
qualification rules. This could take two
years. | | COMPONENT
COLUMN 1 | I SSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|--------------------|-----------------|--|----------------------------------|---------------------|---|----------------------|---| | (146) | CORROSION (contd) | esia
18 | 7 | None. | None. | 7 | 7 | Steam-line break with
consequential small LOCA. | | (147) | | 35 | 7 | None. | None. | ? | 7 | Degradation of Internal Appurtenances in LURs * Priority - LOW. | | (148) | | 66 | Hitigate or reduce
steam generator tube
degradations and
ruptures. | None. | None. | 7 | 7 | Steam Generator Requirements
* Four Items Priority - HIGH. | | (149) | | 67 | 7 | None. | None. | 7 | 7 | Steam Generator Staff Actions * Priority - LOW. | | (150) | | 111 | Stress corrosion creck-
ing in stemm generator. | None. | None. | 7 | 1 | Stress Corrosion Cracking of Pressure
Boundary Ferritic Steels in Selected
Environments. | | (151) | | A-3 | Steam generator tube integrity degraded due to westage and stress corrosion cracking. | None. | None. | 7 | 7 | Westinghouse Steam Generator Tube Integrity * See MLREG-0371. *Degradation decreased by conversion from phosphate to an all-volative water treat- ment. Denting which leads to primary side atress corrosion continues to be a problem. | | (152) | | A-4 | Steam generator tube integrity degraded due to westage and stress corrosion cracking. | None. | None. | 7 | , | CE Steam Generator Tube Integrity See MUREC-0371. Degredation decreased by conversion from phosphate to an all-volative water treatment. Denting which leads to primary side stress corrosion continues to be a problem. | | (153) | | A-5 | 7 | None. | 7 | 7 | 7 | BEW Steem Generator Tube Integrity * See WUREG-0371. | | (154) | | A-12 | Lameilar tearing and
low fracture toughness
of steam generator and
reactor pump support
materials. | Hone. | 7 | | 1 | Fracture Toughness of Steam Generator and
Reactor Coolant Pump Supports
* Solution made available in October 1983
with publication of MUREG-0577. | | (155) | | A-15 | Operation of LMR results in alow corro- sion of interior metal surfaces of the pri- mary coolant system, then activated by neutron flux when circu- lating through the reactor and plate-out. Once plated, they cannot be removed by plant water chemistry system. | Mone . | None. | Assess the efficiency
of water chemistry
system to meet extended
plant life. | 7 | Primary coolant system decontentiation and steem generator chemical cleaning. | | COMPONENT
COLUMN 1 | ISSUE
COLUMI 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|--|----------------------|---|---|--|--|--|--| | (156) | CORROSION (contd) | GSIs (contd)
8-60 | Presence of loose
object in primary
coolant system can be
indicative of degraded
reactor safety system
resulting from failure
or weekening component. | None. | None. | 7 | 7 | Loose Part Monitoring System • Priority - RESOLVED. | | (157) | | ARS
3.2 | Mone. | Review of plant
procedures/records
could give insight
into deterioration. | None. | None. | None. | Quality Assurance documentation and/or records required to show and evaluate deterioration of a component. | | (158) | | 5.37 | Hone. | Review of plant
procedures/records
could give insight
into deterioration. | Mone. | None. | None. | | | (159) | | 5.3.10 | Hane. | Review of plant
procedures/records
could give insight
into deterioration. | Hone. | None. | None. | | | (160)
IIII. | SURVEILLANCE * TESTING * INSPECTION * MAINTENANCE & REPAIR * TURE CLEANING & REPAIR * NOE * INFORMATION/DATA REQUIREMENTS - FREQUENCY - DATA COLLECTION - TARENO CLEVES - RECORDING KEEPING | CFRs
10 CFR 50 | Surveillence Program | "Her programmatic
criteria" standard
that could, by Ref.,
become a part of
10 CPR 50 if it
were established
by a standard's
group at request
of MUPLEX. | "Programmetic cri- teria" type standard being considered by SUPLEX for entire ructeer plant and all components of concern. | Overall guidence/
planning for surveil-
lance program. | This standard would serve as a guide to a mattear utility in become their devel-plant-specific program plan. It would provide overall guidence for steam generator issues. | Suggested that this "Programmatic-Criteria" standard become a parent standard and that other daughter standards any be needed to specify inspection techniques, the evaluation and identification of aging mechanisms, the establishment of special or enhanced maintenance programs, and the development and implementation of recordiceping and trending programs. Quidence could slab be provided separately for evaluating the effects of plant translent events on component or system life. This standard is expected to be used by nuclear utilities to establish a plan for essessing the feesibility of a plant life extension program and for developing and implementing such a program where practical. It would assist utility personnel in identifying actions required to preserve a plant life extension option end for identifying needs for equipment testing, inspection, sonitoring, and assessment. It will provide a framework for addressing future regulatory requirements as they might affect the extension of plant life and to support particular plant operating and meintenance practices as an integral part of prudent plant sanagement. (Prepared by J. Christie for MUPLEX Codes and Standards Subcommittee.) | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT
COLUMN 3 | AGING FEATURESCOLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING MEEDS
COLUMN 7 | LIFE EXTENSION NEEDS COLUMN 8 | CONNENTS
COLUMN 9 | |-----------------------|----------------------|-----------------------------|--|----------------------------------|--|-------------------------|-------------------------------|---| | (161) | SURVEILLANCE (contd) | CFRs (contd) | Could lead to MRC rule
changes. | | MUPLEX Codes and
Standards Identifica-
tion Number PMR, DB on
Steam Generator (see
comments). MUPLEX
IR to be prepared. | | | * Description: Develop UT techniques and ISI program for detection and sizing of flams in steam generators. | | (162) | | TS6
3.4.4.5 | Requires eddy current
testing of SG U-tubes. | None, not addressed. | None. | M/A | 7 | TS requires eddy current testing of SG U-tubes, IGA effects on U-tube well thickness could be detected though the caume is not necessarily inferred. Reporting requirements would have to be expensied. | | (163) | | 3/4.4.10
3/4.0.5 | Requires ASME,
Section XI, treatment
for SG with regard to
maintenance if Code
Class 1, 2, or 3. | None, not addressed. | None. | N/A | î | This TS requires the requirements of TS 3/4.4.0.5 (ASME Section XI, ISI) to be applied to the Steam Generator. | | (164) | | SRPs
3.9,3 | Material Integrity. | Reference ASME
Codes. | None. | | | | | (165) | | 5.2.3 | Corrosion and Stress. | None. | None. | | Yes. | Covers construction only. | | (166) | | 5.2.4 | General. | None. | None. | Yes. | | ASME Sec XI requirements may not be adequate for deterioration. | | (167) | | 5.2.1.1 | Must meet 10 CFR 50.55a
(i.e., meet ASME Sec-
tion III requirements
for pressure boundaries). | Hone. | itone . | None. | 7 | Doesn't address specific issues; Section III must be followed. | | (168) | | 5.4.2.1 | Overall Integrity,
Reference ASME Codes. | None. | None. | | | | | (169) | | 5.4.2.2 | Steam Generator Tube
In-service Inspection
(GDC-32), Reference
to RG 1.83 and TS for
each MSSS
supplier
(MMEG-0103, 0212,
0452). | tsi | 7 | 7 | 7 | Inspection Program to detect aging; is it effective? Doesn't prevent aging. | | (170) | | 6.6 | In-service Inspection of Class 2 & 3 components (SG secondary side.) | None. | 7 | 7 | 7 | Program based on 10 CFR 50.55e and detailed in Section XI. | | (171) | | 10.3.6 | NDE and cleaning (Steam
Generator shell side)
with reference to
RG 1.37 for cleaning.
Also 10 CFR 50, 50.55a,
and Appendix A. | None. | 7 | Mone. | , | Concerned with Class 2 & 3 components, therefore only shell side of SG. Mainly references other documents to follow. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION MEEDS | COMMENTS
COLUMN 9 | |-----------------------|----------------------|--|---|--|--|--|---|--| | (172) | SURVEILLANCE (contd) | SRPs (contd)
17.2 | Implement 04 program. | None. | 7 | None. | | SRP does not provide an in-depth description of QA requirements and doesn't address aging per se. | | (173) | | RGe
1.83, Rev. 1 | Eddy-Current of Tubes. | Monitoring. | RG 1.83, Rev. 2,
being developed
from Steam Generator
Integrity Program. | Better equipment and
methods for defect
detection, characteriza-
tion, and sizing needed. | Hore accurate informa-
tion needed on defect
type and size to pre-
dict remaining tube
integrity. | Rev.2 of RG 1.83 does not address performance demonstration issues. | | (174) | | 1.85 | No explicit reference
to sgirg; allows use
of ASME approved and
MRC code cases appli-
cable to Section III. | The RG implies life
extension by provid-
ing acceptance meth-
od for approved
(ASME) meterials
acceptable to cur-
rent Code Cases. | | W/A | M/A | ASPE Code Cases are not mandatory. Code Cases provide a mechanism to use alternate methods within jurisdiction of the code. The cases are usually supersaded (smulled) by revisions to the code, i.e., the case becomes part of the code. In other instances, the case may be reversed or dropped as an applicable method. | | (175) | | 1-147 | No explicit reference
to aging; allows use
of ASME approved and
NRC code cases appli-
cable to Section XI. | The RG implies life extension by providing acceptance method for approved (ASPE) inspection methods using current Code Cases. | | M/A | W/A | ASME Code Cases are not mandatory. Code Cases provide a mechanism to use alternate methods within juriediction of the code. The cases are usually supersaded (armulled) by revisions to the code, i.e., the case becomes part of the code. In other instances, the case may be reversed or dropped as an applicable method. | | (176) | | 1.158 | Quelification for
inspection personnel. | Monitoring. | ASME Section XI
Special Morking Group
developing perform-
ance demonstration
requirements for ET
inspections. | Better detection and
sizing of defects
meeded especially for
cracks. | Weed methodology for
qualifying ET inspec-
tors. | | | (177) | | ASME
Section III,
Subsection
MR
ME
MF | Requirements-full-
strength and pressure
integrity. | None. | Hone. | N/A | New guide to cover
limit of deterioration
is needed. | Rules cover construction requirements but do not cover deterioration. | | (178) | | Section XI | Material and component condition essessment. | Ref. Info./Dete
bases as they apply
to requests for
license extensions/
renessis. | Hew Hormandetory
appendix on Record
Keeping has passed
the SMG-PLEX. | | Ref. info/deta
bases to support
extensions/renewals. | As meterials and components age,
the predictive capabilities for physi-
cal and machenical property changes
must improve. Since during a plant's
service life an increasing amount of
information/data with the available from
surveillance programs, batter pro-
cedures to evaluate and use this infor-
metion/data must be developed. | | (179) | | | Survettlance, | New beseline
examination
requirement. | A new teek group
on Beseline Exami-
nation has been
established. | | Evaluate a new
baseline examination
for license extension
requests. | | | COMPONENT
COLUMN 1 | ISSUE
COLUMB 2 | REG. INSTRUMENT | AGING FEATURES
COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT UNITIATIVES
COLUMN 6 | AGING NEEDS
COLUMN 7 | LIPE EXTENSION MEEDS | COMMENTS
COLUMN 9 | |-----------------------|----------------------|----------------------------|---|--|---|--|--|--| | (180) | SURVEILLANCE (contd) | ASME (contd)
Section XI | Allows for inspections
beyond 40 years. | Changes to Inspec-
tion Plans A and
8 which are cur-
rently based on a
40-year operating
life based on four
intervals, the sum
of which = 40. | SME has implemented revisions to IMA-2600, which will delete the 40-year limit currently contained in Section XI. Also, reviewing need for more frequent inspections. | Extended surveillance beyond 40 years. | Surveillance beyond
40 years. | The frequency of inspection should depend on the degradation sechanisms and the condition of the component. | | (181) | | | Monitoring and Testing. | Information/Deta
for trend curves. | Development of new
exam techniques to
detect age-related
degradation and
fatigue being
considered. | Information and Data. | Monitoring/Testing
techniques. | | | (182) | | | Monitoring and Testing. | Information/Data
for trend curves. | Considering hydro-
static testing
transe where
changes are needed
for aging effects. | Information and Date. | Honitoring/Teeting
techniques. | | | (183) | | | Information and Data
for trand curve
projections. | Records-
Information/Deta. | SAG is considering
development of
mendatory appendix
for recordkeeping. | information and Data
for trend curves, | Records-
Information/Data. | This Appendix would provide the
utility owners with guidence as to the
type of records which any be beneficial
in supporting a license extension
request. | | (184) | | | Fatigue failures. | Anticipate and
avoid fatigue
failures. | Fatigue monitoring
technology developed
and demonstrated.
Several facilities
are proceeding. | Experience and test
data for high-cycle
effects. | Regulatory acceptance of alternate approach to design besis. | a) Faitures unlikely from cycles considered
in design. Design approach is conservative. Component features included to preclude
fatigue faiture. Components have high
tolerance to flame. | | | | | | | | | | b) Fatigue cracking has occurred during operations: vibration; rapid thermal cycling; pre-existing flams other conditions not considered in design. | | (185) | | IV8-2500 | None. | None, | Regulatory Guide
1.83. | Yes. | tasus new Regulatory
Guide 1.83. | 3% inspection is not adequate and full length
is needed (tube sheet to tube sheet). Current
rules require sequential 181, if file(s) are
detected, i.e., if something is found, easple
size is increased. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING MEEDS | LIFE EXTENSION NEEDS | COUNTYS
COLUMN 9 | |-----------------------|----------------------|--------------------------|--|----------------------------------|------------------------------|--|---|---| | (186) | SURVEILLANCE (contd) | ASME (contd)
IVM-3510 | Acceptance Standard, | Acceptance
Standard, | None. |
None. | Evaluation and Guide
for allowable indica-
tions and deteriora-
tion limits should
be determined. | | | (187) | | IVR-3512 | Acceptance Standard. | Acceptance
Standard, | None. | None. | | | | (188) | | IV8-3516 | Acceptance Standard. | Acceptance
Standard, | None. | Hone. | | | | (189) | | tue-3519 | Acceptance Standard. | Acceptance
Standard, | None. | Mone. | | | | (190) | | IV8-3520 | Acceptance Standard. | Acceptance
Standard, | None. | Mone. | | | | (191) | | 148-3521 | Yes. | Yes. | | | Allowable indication
for U-band flaw is now
40% through-well.
Growth rate shows this
is too high. | Amount of tubes plugged in a steem generator could give guidence for license renewel. | | (192) | | IUB-2413,
2430 | None, | None. | | Yes. | | Should have increased examination program
after detection of flams: 3-1/2 years between
examinations is now possible. | | (193) | | IMB-3630 | None. | | Regulatory Guide
1.83. | | Yes, detection and sizing of SCC and IGA. | States that evaluation of cracks or IGA, etc.,
shall be performed by snalysis acceptable to
regulatory authority. | | (194) | | Appendix IV | Horne. | None. | | | | Appendix IV rewrite in process. | | | | | | | | | | This section of ASME (Section XI) may be transferred to Section V. Section XI will be replaced with a performence downstration and qualification guideline. This is in the process of being written now but could take two years. | | (195) | | QSIs
18 | 7 | None. | None. | 7 | 7 | Steam-line break with consequential small LOCA. | | (196) | | 29 | Visual examination is
the primary method to
detect degradation by
acid corrosion or
erosion/corrosion. | Mone. | Hone. | Meed NDE for testing
bolts and stude. Does
the impection
frequency or fraction
inspected need to be
increased for extended
life? | None. | Bolting Degradation or Fallure in nuclear plants • Priority • NIGH, | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|----------------------|--------------------|--|----------------------------------|------------------------------|--|----------------------|--| | (197) | SURVEILLANCE (contd) | GSIs (contd)
35 | Loose part munitoring program. | None. | None. | 1 | 7 | Degradation of Internal Appurtenances in LLRs * Priority - LOW. | | (198) | | 66 | Mitigate or reduce
steam generator tube
degradation and
rupture. | None. | None. | 7 | 7 | Steam Generator Requirements
* Four Items Priority - HIGH. | | (199) | | 67 | Supplement Tube
Inspections. | None. | None. | 7 | 7 | Steam Generator Staff Actions • Priority • LOW. | | (200) | | A-3 | 7 | None. | None. | 7 | 7 | Westinghouse Steam Generator Tube Integrity * See MUREG-0371. | | (201) | | A-4 | 7 | None. | None. | 7 | 7 | CE Steam Generator Tube Integrity * See MUREG-0371. | | (202) | | A-5 | Nane. | 7 | lione. | 7 | 7 | S&W Steam Generator Tube Integrity
* See MUREG-0371. | | (203) | | A-12 | Lamellar tearing and
low-fracture toughness
of steem generator and
reactor pump support
materials. | None. | Norse. | 7 | ? | Fracture Toughness of Steam Generator and
Reactor Coolant Pump Supports
* Solution made aveilable in October 1983
with publication of MUREG-0577. | | (204) | | A-15 | Operation of LMR results in slow corrosion of interior metal surfaces of the primary coolant systems. These are activated by neutron flux when circulating through the reactor and plate out. Radiation levels increase in the primary system, thus complicating routine inspection and maintenance. | None . | None. | Assess impact of in-
creases in radiation
levels on imagection
and maintenance. | 7 | Primery Coolant System Decontamination and
Steam Generator Chamical Cleaning. | | (205) | | USIA-47 | Define generic criteria
for plant specific
reviews for steam
generator overfill
transients in PMRs and
reactor overfills in
BMRs. | None. | None . | 7 | , | Safety implications of Control Systems. | | COMPONENT
COLUMN 1 | 1SSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS COLUMN 7 | LIFE EXTENSION NEEDS COLUMN 8 | COMMENTS
COLUMN 9 | |-----------------------|----------------------|----------------------|---|--|------------------------------|----------------------|---|--| | (206) | SURVEILLANCE (contd) | GSIs (contd)
8-60 | Presence of loose
object in primary coot-
ant system can be
indicative of degraded
reactor safety system
resulting from failure
or weekening component. | None. | None. | 7 | Perform trend analysis
on loose part monitor-
ing data. | Loose Part Monitoring System • Priority - RESOLVED. | | (207) | | ANS
3.2 | Hone. | Review of plant
procedures/records
could give insight
into deterioration. | None. | None . | None. | Quality Assurance documentation and/or records
are required to show and evaluate deteriora-
tion of a component. | | (208) | | 5.37 | None. | Review of plant
procedures/records
could give insight
into deterioration. | None. | None. | None. | | | (209) | | 5.3.10 | None. | Review of plant
procedures/records
could give insight
into deterioration. | Hone, | Mone. | None. | | ## APPENDIX IV ## REGULATORY INSTRUMENT REVIEW FOR PRIMARY PIPING # Understanding and managing aging of PWR RCS piping and nozzles Materials Main coolant pipe **Fittings** - Centrifugally cast SS-Gr. CF6A and CF8M (W), Type 304SS and 316SS (early W plants), SA-516 Gr. 70 (CE), SA-106 Gr. C (B&W) - Statically cast SS - Gr. CF8A and CF8M (W); SA-518 Gr. 70, Type 309L SS (CE, B&W); Type 308L SS (B&W) Type 308L SS (CE, B&W) Type 304L SS (B&W elbows) Ctadding Surge and spray lines Type 316 SS, cast SS - Gr. CF8M (surge line in some CE plants) Charging, safety injection, - Type 318 SS and residual heat removal Safe ends Nozzles on main coolant - SA 105 Gr. 2 (CE), Type 304N SS (Y) pipe - Type 316 SS, Inconel SB-166 (CE, B&W) Thermal sleeves - Inconel SB-166 Stressors & Operational transients, temperature, flow induced vibrations, stratified Environment flows, thermal striping, valve leakage, and thermal shocks Typical RCS piping for W 4-loop plant | UNDERSTAN
(Materials, Stressors, & En | | | MANAGING AGING | | |--|---|---|---|---| | Sites | Aging Concerns | Inservice Inspections, Surv | eillance, and Monitoring | Mitigation | | Nozzies and thermal sleeves Charging Safety injection Surge Spray | Low- and high-cycle thermal and mechanical fatigue | NRC requirements Volumetric and surface examination of 25% of butt welds, including the following welds during each inspection interval (10 CFR 50.55a, IWB-2500): - All terminal ends in each pipe connected to vessels | Recommendations Perform more frequent examinations of nozzle welds and horizontal piping welds having significant fatigue damage Determine fatigue damage by on-line monitoring of pipe wall temperatures and coolant flows, temperatures, and | Maintain full flow in spray line and operate it continuously to prevent stratified flow and thermal shock conditions. Redesign surge and spray line piping by replacing short horizontal sections with sloped sections to prevent stratified. | | Terminal end dissimilar metal welds (between carbon steel components and stainless steel piping) Surge and spray lines Charging, safety injection, and residual heat removal lines to first isolation velve | Low- and high-cycle thermal
and mechanical fatigue
Low- and high-cycle
thermal and mechanical fatigue | - All dissimilar metal welds - All welds having cumulative usage factor equal to or
greater than 0.4 - All welds having primary plus secondary stress intensity range equal to or greater than 2.4 Sm | pressures in nozzies and horizontal portions of piping subject to operational transients, including stratified flows and thermal sleeves Perform nondestructive examinations and loose parts monitoring to assess status of thermal sleeves Develop use of acoustic emission method to detect crack growth in the base metal and welds Develop techniques to monitor actual | flow conditions Redesign piping to eliminate deleterious effects of valve leakage Minimize valve leakage Maintain smaller temperature differences between pressurizer and hot leg coolants during heat up and cool down | | Cast stainless steel piping Hot leg Cross-over leg Cold leg Fittings Surge line | Thermal embrittlement - Coolant temperature - Ferrite content and spacing - Chemical composition of base metal | Same welds are required to be inspected during each inspection interval Flaw evaluation (10 CFR 50.55a, IWB-3000) Leakage and hydrostatic pressure tests (10 CFR 50.55a, IWA-5000) Cycle counting of specified design transients (Tech. Spec. requirement) | degree of thermal embrittlement in cast stainless steel piping: - Analytical modelling of inservice degradation - Metallurgical evaluation to characterize microstructure - NDE to establish correlation between ultrasonic attenuation and fracture toughness Monitor valve leakage in safety injection and residual heat;removal lines Develop UT to detect flaws in cast stainless steel piping | Maintain smaller temperature
differences between the
pressurizer and spray line
coolants | rev. 4 ### REGULATORY INSTRUMENTS REVIEW FOR PRIMARY PIPING | COMPONENT
COLUMN 1
PRIMARY
PIPING
(1) | ISSUE COLUMN 2 STRESS: STRESS CORROSION CRACKING IGSCC GEOLOMENTS INFLAR METALS OF SAFE EMPS FATIGUE LOW CYCLE FATIGUE THERMAL AND MECHANICAL (SEE FIRST COMMENT OF COLUMN 9) | REG. INSTRUMENT
COLUMN 3
CPRS
10 CFR 50 | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 Nuplex codes and Standards work. Identify obvious changes, such as SSC in MUREG-0315. | AGING NEEDS COLUMN 7 El iminate applicable unintentional ambadded 40-year constraints in Regulatory Instrument codes and standards, | LIFE EXTENSION MEEDS COLUMN 8 | Fatigue is generic to all types of plants, and causes and extent differ from plant to plant. It is also recognized that some unique aging problems do exist between Pats and Bults. Forty-year constraints do not apply to all aging factors; i.e., fatigue is a cyclic phenomena and could become excessive after 5 or 10 years of operation. | |---|---|--|---|---|--|--|---|---| | (2) | | 75e
3/4.0.5 &
3/4.4.10 | lione. | None. | None. | Depends on whether
Section XI ISI require-
ments/reports are
adequate vs. what needs
more attention. | Depends on whether
Section XI ISI require-
ments/reports are
adequate vs. what needs
more attention. | This IS requires ASME Section XI requirements concerning ISI and maintenance for BCS piping (IAM T.S. 3/4 4.8.5). | | (3) | | 3/4.4.9.1.1 | Primary side thermal/
pressure cycles are
recorded during ECS
heat-ups and cool-
downs. | bione, cycles asso-
ciated with start-
ups and shut-downs
are recorded and
counted. | None (see comment). | Cycles are recorded.
Might be useful in
evaluating thermal/
pressure cycle history. | Effective methods to
monitor fetigue cycles
for magnitude and
effect over the com-
ponent's service life. | EPRI-sponsored fatigue monitoring "Fatigue-
Pro" could impact the credibility of 15
cycle count data. Fatigue-Pro is reported to
be a measure of the severity of the cycles during
operation, i.e., many operating cycles are less
severe than assumed during the design. | | (4) | | TSe All | | | Section XI SMG on Op-
erating Plant Criteria
is developing neu non-
mandatory appendizes
to address return to
service attuations
when TSa have been
exceeded. | | | | | (5) | | 589a
3.9.1 | Meeting GDC 15: design
with sufficient margin.
Also, GDC 1,2,14;
10 CFR 50, Appendix B
(GC): 10 CFR 100,
Appendix A. | None (except for
initial margins). | , | Moné. | 7 | Evaluate transients used in the design and fatigue analysis. | | (6) | | 5.2.1.1 | Must meet 10 CFR 50,55a
(i.e., meet ASME
Section 111 require-
ments for pressure
boundaries). | None. | None. | None. | 7 | Doesn't apacifically address any one issue;
ASME, Section III, must be followed. | General Notes: 1. A "7" indicates further study/investigation is needed. 2. For the GSIs, "resolved" means the generic safety issue is resolved, not necessarily the aging (saus. 3. For meaning of abbreviations, acronyss, and initialisms, used throughout, see acronyss on page xi, xii, and xiii of the report. | COMPONENT COLUMN 1 | 1\$SUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS | CONNENTS
COLUMN 9 | |--------------------|--------------------|-----------------------|---|--|---|------------------------|--|--| | m | STRESS (contd) | SRPs (contd)
5.2.3 | Review suitability of
materials chosen. Per-
form tests (fracture
toughness). Review pro-
cedures of smrufacture
welding. NDE Section III
NB-2500, NB-2550, and
NB-2570. | Mone. | , | None. | 7 | Covers all Reactor Coolant Pressure Boundary
Materials | | (8) | | 80a
1.147 | No aupticit reference
to sping; provides an
MRC acceptable list of
approved ASME code
cases for Section XI. | The RG implies life extension by providing acceptance method for approved (ASME) inspection methods using current Code Cases, | | N/A | W/A | ASSE Code Cases are not mandatory. Code Cases provide a machinism to use atternate methods within jurisdiction of the code. The cases are unmuffy superseded (aroutled) by revisions to the code, i.e., the case becomes part of the code. In other instances, the case smy be reversed or dropped as an applicable method. | | (9) | | 1.85 | No explicit reference
to aging; provides an
NRC acceptable list of
approved ASME code
cases for Section III. | The RG (mpiles (ife
extension by provid-
ing acceptance meth-
od for approved
(ASME) Code Case
materials and test-
ing acceptable to
MRC staff. | | М/А | W/A | ASME Code Cases are not mandatory. Code Cases provide a machanism to use alternate methods within jurisdiction of the code. The cases are usually superseded (envulled) by revisions the code, i.e., the case becomes part of the code. In other instances, the case say be reversed or dropped as an applicable method. | | (10) | | ASSE
Section III | | Requalification of components. | A new appendix is under consideration which may be used to requestify components which have exceeded the rules for cyclic operation in Section III, MS-3224.4 A task group has been formed to ackness the issue. This also applies to Section XI. | Evaluate new appendix. | Requalification Rules
for components. | | | (11) | | | Fatigue. | fatigue curve
revisions. | Section XI, SMG on
Operating Plant Cri-
teria is reviewing
fatigue curves in
Section III to
determine if they
can be revised to
accommodate oper-
tion beyond 40
years. | | Improved end-of-life
projections, 40 years
and beyond. | Studies are under smy to assess the magnitude of the effects of actual environmental conditions. Code curves
are based on smooth specialems in air at room temperature, whereas materials in service have much rougher surfaces and are exposed to flouing coolent at operating temperatures. The actual surfaces are more prome to crack initiation. Studies and research to assess magnitude of effect of environmental factors could result in need for new Repulatory Guide, Regulatory instruments and/or code revisions. | | CONPONENT
COLUMN 1 | ISSUE COLUMN 2 SIRESS (contd) | REG. INSTRUMENT COLUMN 3 ASME (contd) | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS COLUMN B | COMMENTS
COLUMN 9 | |-----------------------|-------------------------------|---------------------------------------|--|---|---|--|---|--| | (12) | Juesa (conta) | Subsection
NB
NC | Provides for design
loads affecting the
strength and integ-
rity of the pressure
boundary. | None-explicit;
provides rules
for repair and/or
replacement of
code components. | | Implied in the design criteria (see comments). | Guidance is needed
to cover the limits
of component deterio-
ration. | ASME Code for Class I components-piping
dusign required when corrosion or erosion
is expected; the piping thickness shall be
increased over the other design requirements.
This allowance shall be consistent with the
specified design life. | | | | | | | | | | Rules cover design and construction require-
ments but do not cover deterioration. | | (13) | | Section XI | Condition Assessment. | Requalification of
systems and com-
ponents. | Consideration of
development of new
"Article Hul-8000,
Requalification for
Fatigue Life." | Condition Assessment
Information/date. | Requalification of
systems and components
following expiration of
operating license. | | | (14) | | | TSs have been exceeded. | | SUG on Operating
Plant Criteria is
developing men normandatory appendixes
to address return to
service situations,
when ISs have been
exceeded. | | | | | (15) | | SSIS
14 | Cracking in high pres-
sure piping in PARs as
a result of corrosion,
vibratory and thems!
fatigue, and dynamic
loading. | None. | Nome. | Mone. | None. | PuR pipe cracks * Priority - LOW, RESOLVED. * Corrosion cracking in low-pressure piping is addressed in C-7. | | (16) | | 75 | Fatigue failure prob-
lems connected with
nozzle-thermal sleeve
assemblies. | None. | ? | ? | 7 | Detached thermal sleeves - The thermal sleeves were installed in the safety injection accumulator piping nozzle connections to the reactor coolant system cold legs piping. Found at bottom of reactor vessels. | | (17) | | 86 | IGSCC caused leaks in
heat-affected zones of
the safe-end-to-pipe
welds. | None. | 7 | 1 | ? | Long range plan for dealing with stress corrosion
cracking in BMR piping - solution available. | | (18) | (Not used) | | | | | | | | | (19) | | A-10 | SWR feedwater cracking
due to high-cycle
fatigue caused by
fluctuations in water
temperature within the
vessel in the nozzle
region. | None. | None. | BMR feedwater nozzle
cracking solutions
and/or improved repair
methods. | | | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING HEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|---|---|--|----------------------------------|------------------------------|--|--|---| | (20) | STRESS (cantd) | GSIs (contd)
A-15 | Operation of LUR re-
sults in slow corrosion
of interior metal sur-
faces of the primary
coolant system, then
these products are
activated by neutron
flux and when circulated
through the reactor
plate-out occurs. | Hone. | None. | • | 7 | Primary coolant system decontamination and steam generator chemical cleaning. | | (21) | | A-42 | Pipe cracking due to
/65CC of austenitic
stainless steel
components made sus-
ceptible to this by
being sensitized by
post-weld heat treat-
ment or by sensitiza-
tion of a narrow heat-
affected zone near
welds. | None. | Hone. | More effective MOE to
seaure absence of
16SCC, especialty
under weld-overlay
repaired areas. | Evaluate need to
replace susceptible
and/or weld-overlay
repaired piping. | Pipe cracke in BuRe
Priority - RESOLVED, | | (22) | | 8-6 | Through-wall cracks
and fatigue crack
growth. | None. | None. | 7 | 7 | Loads, load combinations, and stress limits. * Priority - NIGH. * See MUREG-2800 Supl. | | (23) | | 8-25 | 7 | Hone. | None. | 7 | 7 | Piping Benchmark Problems. | | (24) | | c-7 | Combinations of fabri-
cation, stress and
environmental conditions
have resulted in
isolated instances of
stress corrosion crack-
ing of low-pressure 304
piping. | None. | itone. | | 7 | PWR System Piping
* Priority - RESOLYED. | | (8) | DYNAMIC EFFECTS VIBRATION THERMAL CYCLES A. THERMAL AGING D. THERMAL SHOCK EROSION COMPINATION CORROSION/ EROSIOM | CFRs
10 CFR 50,
Appendix G,
1, 11 and 1V | 131 programs per ASME
Code requirements. | None. | Hone. | ISI coverage may need
to be increased. | ISI criteria may be
different for License
Renewal. | ISI research needs should be identified. Assisted effects (Note: exposure rates in ex-vessel components may be too low to cause an effect). | | COMPONENT
COLUMN 1 | 18SUE 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|----------------------------|---|--|---|--|--|--|--| | (26) | DYNAMIC EFFECTS
(contd) | TS6
3/4.0.5 &
3/4.4.10 | None. | None. | None. | Depends on whether
Section XI ISI require-
aents/reports are
adequate vs. what needs
more attention. | Depends on whether
Section XI ISI require-
ments/reports are
adequate vs. what needs
more attention. | This TS requires ASME, Section XI, requirements concerning ISI and maintenance for all RCS piping that is code class 1, 2, or 3 (IAM T.S. 3/40.5). | | (27) | | 3/4.4.9.1.1 | RCS thermal cycles
are recorded during
heat-ups and cool-
downs. | None. | None, | Cycles are recorded. Hight be useful in the evaluation of thermal cycle history. | May need to evaluate
thermal cycle history. | | | (28) | | 3.9.2 | Review the criteria,
testing procedures,
and dynamic englysis. | None. | 1 | Mone. | 7 | Assure structural and functional integrity under vibratory loadings. | | (29) | | 5.2.1.1 | Hunt meet 10 CFR 50.55e
(i.e., meet ASME, Section
111, requirements). | None. | None. | lione. | 7 | Doesn't eddress specific issues; ASME
Section III must be followed. | | (30) | | RGs
1.147 | No explicit reference
to aging; provides an
NNC acceptable list
of ASME approved code
cases applicable to
Section XI. | extension by provid- | RG revisions are made
to include or exclude
appropriate Code Cases | R/A | M/A | ASME Code Cases are not mandatory. Code Cases provide a machanism to use alternate methods within jurisdiction of the code. The cases are usually supersaded (armulted) by revisions to the code, i.e., the case becomes part of the code. In other instances, the case may be reversed or dropped as an applicable mathod. | | (31) | |
1.85 | No explicit reference
to aging; provides an
NRC acceptable list
of ASME approved code
cases applicable to
Section III. | extension by provid- | RG revisions are mude
to include or exclude
appropriate Code Cases | M/A | N/A | ASME Code Cases are not mendatory. Code Cases provide a mechaniam to use alternate methods within jurisdiction of the code. The cases re usually superseded (armulled) by revisions the code, i.e., the case becomes part of the code. In other instances, the case may be reversed or dropped as an applicable method. | | (32) | | ASME
Section III
Subsection
MS
NC | Provides for design
requirements for
impact loads, earth-
quake, vibrations,
RV thrusts, weights
and the effects of
thermal expension and
contration. | None explicit;
provides rules for
repair and/or
replacement of code
components. | | Implied in the design criterie. | Buildence is needed
to cover the limits
of component deterio-
ration. | ASME Code for Class I components piping design required when correction or erosion is expected; the piping thickness shall be increased over the other design requirements. This allowence shall be consistent with the specified design life. Rules cover design and construction requirements but do not cover deterioration. | | COMPONENT (33) | ISSUE COLUMN 2 DYNAMIC EFFECTS (contd) | REG. INSTRUMENT COLUMN 3 ASME (contd) Section XI | AGING FEATURES COLUMN 4 Corrosion and Erosion. | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES COLUMN 6 A new SMG on pipe wall-thinning has been established and will review this issue with EPRI. Main area of concern at this time is the effect of erosion/ corrosion on piping in non-rucleer appli- cations (AMSI/ASME B-316-1904), the Remeining Strength | AGING MEEDS
COLUMN 7 | LIFE EXTENSION NEEDS COLUMN 8 | COMMENTS COLUMN 9 The SMG principally applies to secondary systems, not primary. The Section XI Subgroup on Hondestructive Examination is currently developing a Code Case and non-mendatory appendix on UT Detection and Measurement of Erosion/Corrosion. AMSI/ASME 8-310-1984, "Manual for Determining the Romaining Strength of Corroded Pipelines," addresses non-muclear applications, but may have application to nuclear components. | |----------------|---|--|--|--|---|-------------------------|--------------------------------|---| | | | | | | of Corroded Pipelines. | | | | | (34) | (Not used) | | | | | | | | | (35) | | GSIa
14 | Cracking in high pres-
sure piping in PARs as
a result of correcton,
fatigue, and dynamic
loading. | None. | None. | Hone. | Hone. | PWR pipe cracks * Priority - LOW, PESOLVED. * Corrosion cracking in low-pressure piping is addressed in C-7. | | (36) | | 73 | Fatigue failure prob-
lems connected with
nozzle-thermal sleeve
assemblies. | None. | None. | 7 | , | Detached thermal steeves Thermal steeves installed in the safety injection accumulator piping nozzle connections, to the reactor coolant system cold less piping, were found at the bottom of reactor vessels. | | (37) | | 86 | IGSCC-caused leaks in
heat-affected zones of
the safe-end-to-pipe
welds. | Hone. | Mone. | 7 | 7 | Long-range plan for dealing with stress
corresion cracking in BMR piping
* Solution available, | | (38) | (Not used) | | | | | | | | | (39) | | A-1 | Water hammer incidents
involving steam genera-
tor feed rings and pip-
ing, emergency core
cooling systems, RNR
systems, containment
spray, service weter
feedwater and steam
lines. | Mone. | Hone. | 7 | 7 | Water hummer "RESOLVED 3/15/84 with publication of NURSE-0927. (Complete resolution of all water hummer problems remains as a debatable question.) | | COMPONENT
COLUMN 1 | COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING MEEDS COLUMN 7 | LIFE EXTENSION NEEDS COLUMN 8 | COMMENTS
COLUMN P | |-----------------------|--|---|---|---|------------------------------|---|--|--| | (40) | DYMAMIC EFFECTS
(contd) | GSIs (contd)
A-10 | Bulk feedwater cracking
due to high-cycle
fatigue caused by
fluctuations in water
temperature within the
vessel in the nozzle
ragion. | None. | None. | , | 7 | BWR feedweter nozzłe cracking. | | (41) | | A-15 | Operation of LMR re-
suits in alow corro-
sion of interior metal
surfaces of the primary
coolant system, then
these products are
activated by neutron
flux and when circulated
through the reactor
plate-out occurs. | None . | Nome . | , | 7 | Primary coolant system decontamination and steam generator chemical cleaning. | | (42) | (Not used) | | | | | | | | | (43) | (Not used) | | | | | | | | | (44) | (Not used) | | | | | | | | | (45) | (Not used) | | | | | | | | | (46) | STRUCTURAL INTEGRITY * FRACTURE * TOUGHNESS * EMERITTLEMENT * THERMAL * SEISHIC (DAMAGE/ FAILURES * MANGER, SMUNDERS AND ANCHORS | CFRs 50,
Appendix A,
General Design
Criteria (GDC) | Provides principal
design criteria for the
testing and performance
requirements for
components. | None. | None. | M/A, doesn't change over time. | Does the existing design (generic or specific), meet the current (present time) acceptable testing end performence standards for life extension? | | | (47) | | Appendix A, | Design of components should be accomplished with consideration for natural phenomene, such as earthquakes, tornadoes, and floods. | Pesign is based on
historical data
from the time of
original license;
accuracy and
information may
have been altered, | None. | Requirements may change
over time. "Matural"
events may alter the
design base. | Analyses of current
known conditions as
applicable will be
required. | Generic or site apacific research may be Criterion 2 necessary. | | (48) | | TSa
3/4.0.5 &
3/4.10 | Moné. | None. | Mone. | Depends on whether
ASME, Section XI ISI,
requirements are
adequate vs. what needs
more attention. | Depends on Whether
ASME, Section XI 151,
requirements are
adequate vs. What needs
more attention. | This TS requires the requirements of T.S. 4.0.5. (ASME, Section XI; ISI) be applied to RCS piping. | | CONFONENT
COLUMN 1 | I SSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING MEEDS
COLUMN 7 | LIFE EXTENSION NEEDS | COMENTS
COLUMN 9 | |-----------------------|---------------------------------|-----------------------------------|---|---|---|---|--|--| | (49) | STRUCTURAL INTEGRITY
(contd) | TSs (contd)
3/4.7.9 | Requires periodic
testing of snubbers, | None. | None. | Hight need to expand
to include deed weight
supports, anchors,
etc., as necessary.
Inspections are to be
the basis for hanger
evaluation. | Could be modified to
ensure records are
adequate for LR
assessment. | This TS requires periodic functional testing of snubbers. | | (50) | | 7Sa |
| | Morking Group on Op-
erating Plant Criteria,
a proposed addition to
Article ISS-3000 of Setion XI would contain
rules and formulas for
performing an evalua-
tion of a component's
fitness for continued
service when either
ISS or elements of
its construction/
design Limitations
had been exceeded. | | | | | (51) | | 389a
3.6.2 | Review original system
design adequacy
system. | None. | None. | None. | 7 | Nainly concerned with the consequences of a
pipe break (pipe whip and jet forces). By
knowing where and how a pipe is most likely
to break, implies providing adequate design
margins to prevent such occurrences (i.e.,
the piping system is analyzed thoroughly). | | (52) | | STP MER 3-1 | Stress and fatigue
limits; design require-
ments; inspection of
welds. | Mone. | 7 | Nane. | 7 | Breeks are usually at points of high stress
and fatigue (terminal ends and nozzles). | | (53) | | 3.9.3 and
3.9.3,
Appendix A | Reference to ASME
Section 111 and GDC
1,2,4,14,15. | None. (except for
original design
margins). | 7 | Mone. | 7 | Loading combinations, system operational transients, and atress limits. | | (54) | | 5.2.1.1 | Must meet 10 CFR 50,55m
(i.e., meet ASME,
Section III, require-
ments for pressure
boundaries). | None. | Hone. | None. | 7 | | | (55) | | 5.4.3 | Meeting requirements of SRP, Section 3.9.1, 3.9.2, 3.9.3, 5.2.3, and 5.2.4. | None. | None. | None, | 7 | | | (56) | | RGs
1.31, Rev 3 | Control of ferrits in
stainless steel welds
to limit microcracking. | Mone. | None. | Define level of ferrite
needed to resist envi-
ronmentally assisted
cracking. | Determine life expec-
tancy of weld overlay
repairs. | Intent of RG 1.31 umen't to specify ferrite
level needed to resist cracking. Results
from EPRI RP T302-2 suggest currently
accepted ferrite levels may be too low. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|---------------------------------|---|---|---|---|---------------------------------|---|---| | (57) | STRUCTURAL INTEGRITY
(contd) | RGs (cantd)
1.46 | Protection against
pips whip inside
containment. | Withdrawn 3/1/85,
See SRP 3.9.2, | None. | | | Cast Stainless Steel is a generic issue in primary piping systems, i.e., flanges, pump casing, etc. | | (58) | | 1.147 | No explicit reference
to sairg; provides an
NHC acceptable list
of ASME approved code
cases applicable to
Section XI. | extension by provid- | RG revisions are made
include or exclude
appropriate Code Cases. | WA | R/A | ASME Code Cases are not mandatory. Code Cases provide a machanism to use alternate methods within jurisdiction of the code. The cases are usually superseded (annulted) by revisions to the code, i.e., the case becomes part of the code. In other instances, the case may be reversed or dropped as an applicable method. | | (59) | | 1.48 | Design and loading
combinations for
seismic Category 1,
fluid system components. | Withdrawn 3/1/85.
See SRP 3.9.3 | None. | | | | | (60) | | 1.85 | No explicit reference
to sging; provides an
NRC acceptable list
of ASNE approved code
cases applicable to
Section III, | extension by provid- | RG revisions are made
to include or exclude
appropriate Code Cases: | N/A | M/A | ASME Code Cases are not merdatory. Code Cases provide a mechanism to use alternate methods within jurisdiction of the code. The cases are usually superseded (annulled) by revisions the code, i.e., the case becomes part of the code. In other instances, the case may be reversed or dropped as an applicable method. | | (61) | | ASME
Section III
Subsection
MB
MC | Provides for design
requirements for
impact loads, earth-
quake, vibrations, RV
thrusts, seights and
the effects of thermal
expension and
contraction, | None explicit;
provides rules for
repair and/or
replacement of code
components. | | Implied in the design criteria. | Guidance is needed
to cover the limits
of component deterio-
ration. | Asset Code for Class I components-piping design, requires when corrosion or erosion is expected the piping thickness shall be increased over the other design requirements. This allowence shall be consistent with the specified design life. Rules cover design and construction requirements but do not cover deterioration. | | (62) | | GSIs
14 | Cracking in high pres-
sure piping in PARs as
a result of corrosion,
vibratory and thermal
fatigue, and dynamic
loading. | None. | None. | None. | Morne. | PMR pipe cracks * Priority - LOW, RESOLVED. * Corrosion cracking in low pressure piping is addressed in C-7. | | (63) | | 86 | | | | | | Long-range plan for dealing with stress corrosion cracking in BMR piping. | | (64) | | 119 | None. | None. | None, | None. | None. | Piping review committee recommendations - "No
significant change in public safety will result
from resolution of this issue." | | COMPONENT
COLUMN 1 | 189UE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING MEEDS
COLUMN 7 | LIFE EXTENSION MEEDS | COMMENTS
COLUMN 9 | |-----------------------|---------------------------------|---------------------|---|----------------------------------|---------------------|-------------------------|----------------------|---| | (65) | STRUCTURAL INTEGRITY
(contd) | GSIs (contd)
A-1 | Water hasser incidents
involving steam genera-
tor feed rings and
piping, emergency core
cooling systems, RMR
systems, containment
spray, service water
feedwater and steam
lines. | Mone. | Mone. | , | • | Mater hammer
• RESOLVED 3/15/84 with publication of
MUNES-0927. | | (66) | | A-10 | BMR feedwater crecking
due to high-cycle
fatigue caused by
fluctuations in mater
temperature within the
vessel in the nozzle
region. | None. | None. | 7 | 7 | SWR feedwater nozzle cracking. | | (67) | | A-15 | Operation of LMR re-
sults in slow corrosion
of interior metal sur-
faces of the primary
coolant system, then
these products are
sctivated by neutron
flux and when circulated
through the reactor
plate-out occurs. | Hone . | None. | 7 | 7 | Primary coolant system decontamination and steam generator chemical cleaning. | | (68) | | A-42 | None. | None. | None. | Hone. | None. | Pipe cracks in BARs
* Priority - RESOLVED. | | (69) | | B-6 | Hone. | None. | None. | Mone. | None. | Loads, load combinations, and stress limits * Priority - NIGH. | | (70) | | B-25 | 7 | None. | 1 | 7 | 7 | Piping Benchmerk Problems. | | (71) | | C-7 | None. | None. | None. | 7 | 7 | PAR System Piping
* Priority - RESOLVED. | | COMPONENT COLUMN 1 | CORROSION: "MATER CHEMISTRY "MATER CHEMISTRY "IMPURITIES "INTERGRAMMAR ATTACK (16A) "COMBINATION— CORROSION— EROSION "IRRADIATION ASSISTED 5,2,3 EFFECTS (INCREASED RADIO— LYTIC DECOMPOSITION OF MATER) | REG. INSTRUMENT COLUMN 3 CFMS 10 CFR 50, Appendix A, General Design Criteria (GDC) | AGING FEATURES COLUMN 4 Provides principal design criteria for com- ponent testing and per- formance requirements. | LIFE EXTENSION FEATURES COLUMN 5 None. | CURRENT INITIATIVES COLUMN 6 None. | AGING MEEDS COLUMN 7 N/A, doesn't change over time. | LIFE EXTENSION NEEDS COLUMN 8 Does the existing design (generic or specific), seet currently acceptable testing and performance standards for life extension? | COMMENTS COLUMN 9 | |--------------------|--|---|---|--|------------------------------------|--|--|--| | (73) | | 156
3/4.0.5 &
3/4.4.10 | Requires ASME, Section
XI, 151 for code class
1, 2, and 3 components. | None. | None. | N/A | Depends on
whether
reports/records of
ASME, Section XI, are
adequate to be useful. | This TS requires the requirements of T.S. 3/4.0.5 (ASME, Section XI; [8]) to be applied to code class 1, 2, 3 piping. (Note: class 2 & 3 are generally not primary systems.) | | (74) | | 3/4.4,4.7 | Requires chemistry
control of the primary
(RCS) coolant. | None. | None. | H/A | RCS water chemistry
records are retained.
Perhaps useful in
evaluating piping his-
tory with regard to
(RCS). | RCS chamistry limits are shown beloe. Are these adequate for the corrosion issue? Steedy State Farsmeter Limit Iransiant Limit (dissolved 02)** <0.10 ppm <1.00 ppm (cli)* <0.15 ppm <1.50 ppm (F')* <0.15 ppm <1.50 ppm *I.50 ppm *I.50 ppm *N/A if RCS temp. is <250*F. | | (75) | | SMPs
5.2.1.1 | Nust meet 10 CFR 50.55a
(1.e., meet ASME
Section III require-
ments for pressure
bounderies). | None. | Wone, | None. | 7 | Doesn't address specific issues; ASME
Section III must be followed. | | (76) | | 5.2.3 | Review suitability
of materials chosen,
NOE testing per ASME
Section III, NB-2500. | None. | 7 | None. | ? | Covers ell reactor coolent pressure boundary materials. | | (77) | | RGs
1.44 | Process controls to
minimize sensitization
in stainless steel
welds. | None. | None. | Better understanding
of relationship
between welding proc-
ess and sensitization. | Determine life expec-
tancy of sensitized
material and nuclear-
grade stainless steel. | MAC Program on "Evaluation of Melded and
Repair-Melded Stainless Steel for UNR
Service" initiated work in this area but was
not completed. A small effort may be ongoing. | | COMPONENT
COLUMN 1 | ESUE COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|--------------------|---|---|--|---|---|---|---| | (78) | CORROSION (corred) | RGs (contd)
1.56, Rev. 1 | Control of water
purity in BMRs. | None. | AM, programs on BMR
pipe crack remedies. | Better knowledge of
affect of impurities
on cracking. | Life expectancy of
cracked pipes on
presence of impurities. | Re 1.56 limits only conductivity, pH and chloride content of water. Other species need to be considered. Recent research suggests limits may not be low enough. MURES-0313 includes guidelines for BMR piping (18302 mitigation). | | (79) | · | ASME
Section III
Subsection
MB
MC | Provides for design
loads affecting the
strength and integ-
rity of the pressure
boundary. | Hone explicit;
provides rules for
repeir and/or repla
ment of code
components. | ce- | implied in the design
criteria (see communts). | Guidence is needed
to cover the limits
of component deterio-
ration. | ASME Code for Class I components piping design required when corrosion or erosion is expected; the piping thickness shall be increased over the other design requirements. This allowence shall be consistent with the specified design life. Rules cover design and construction requirements but do not cover deterioration. | | (60) | | GQ1a
14 | Cracking in high pres-
sure piping in PMRs as
a result of corresion,
vibratory and thermal
fetigue, and dynamic
loading. | Mone. | Hone. | None. | None. | PAR pipe cracks * Priority - LOW, RESOLVED. * Corrosion cracking in low-pressure piping is addressed in C-7. | | (81) | | 73 | Fatigue failure prob-
iema convected with
nozzle-thermal sleeve
essemblies, | Mone. | None. | 7 | 7 | Detached thermal eleaves * Priority - * The thermal sleaves installed in the sefety injection accumulator piping nozzle convections to the cold leg piping were found at the bottom of reactor vessels. | | (62) | | 86 | IGSCC-caused leaks in
heat-affected zones of
the safe-end-to-pips
welds, | None. | Mone. | ? | 7 | Long-range plan for dealing with stress
corresion cracking in BMR piping.
* Solution available. | | (83) | | 111 | Stress corrosian cracking in steem generator, | None. | None. | 7 | 7 | Stress corrosion cracking of pressure
boundary ferritic steels in selected
environments. | | (84) | | 119 | Mone. | Hone. | None. | Hone, | Mone. | Piping review committee recommendations - "No
significant change in public safety will result
from resolution of this issue." | | (85) | | A-1 | Hone. | None. | Mone. | None. | Hone. | Meter hammer. | | (86) | | A-10 | Hone. | None. | Mone. | Mone. | Hone. | BUR feedwater nozzle cracking. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT
COLUMN 3 | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|--|---|---|---|------------------------------|---|--|--| | (67) | CORNOSION (cantd) | GSIs (contd)
A-15 | Operation of LMR re-
sults in slow corresion
of interior metal
surfaces of the primary
coolant system, then
these products are
activated by neutron
flux and when circulated
through the reactor
plate-out occurs. | None. | Norre. | , | , | Primary coolant system decontamination and stem generator chemical cleaning. | | (88) | | A-42 | lione. | None. | Norse. | None. | None. | Pipe cracks in Bules Priority - RESOLVED. | | (89) | | 8-6 | tone. | None. | None. | None. | None. | Loads, load combinations, and stress limits * Priority - HIGH. | | (90) | | 1-25 | 7 | None. | None. | 7 | 7 | Piping Benchmark Problems | | (91) | | C-7 | lione. | None. | None. | 7 | 7 | PuR System Piping Priority - RESOLVED | | (92) | SURVEILLANCE: * TESTING * INSPECTION * NAINTENANCE AND REPAIRS * NOE | CFRs
10 CFR 50,
Appendix A,
General Design
Criteria (GDC) | Provides principal
design criteria for
the testing and per-
formance requirements
for components. | tions. | Norse. | M/A, doesn't change
over time. | Does the existing design (generic or specific) meet currently acceptable testing and performance standards for life extension? | | | (93) | | Appendix A,
Criterion 2 | Design of components
should be accomplished
with consideration for
natural phenomens,
such as earthquakes,
tornadoes and floods. | Design is based on
historically data
from the time of
original license;
accuracy and
information may have
been altered. | None. | Requirements may change
over time. "Natural"
events may elter the
design base. | Analyses of current
troum conditions as
applicable will be
required. | Generic or site specific research any be
necessary. | | (94) | | Tie
3/4.0.5 &
3/4.10 | Requires ASME,
Section XI, treatment
of piping with regard
to maintenance and 151
if code class 1, 2,
or 3. | None. | None. | u/A | , | TS require the provisions of T.S. 3/4.0.5 (ASME, Section XI, Inservice inspection) be applied to Code Class 1, 2 & 3 Piping. | | CONPONENT | 189UE
COLUMI 2 | REG. INSTRUMENT | AGING FEATURES
COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | COLUMN 6 | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS | COUPENTS
COLUMN 9 | |-----------|----------------------|-------------------|--|----------------------------------|--|--|---|---| | (95) | SURVEILLANCE (contd) | TSs (cantd) | | | HSPE-12-4311 HMPLEX
report to be pre-
pared on reactor
coolant pressure
boundary piping
(see comments). | | | Description: Perform wall thickness trending on
primary/secondary piping systems. Also requirement
for transient
monitoring of primary piping high-
stress locations and thermal duty. Establish
piping vibration and dynamic effects measurement
piping/sliding support locations for wear/corrosion | | | | | | | | | | Could leed to TSs modifications of MRC rule changes or codes and Standards. | | (%) | | SRPs
5.2.1.1 | Hust meet 10 CFR 50.55a
(i.e., meet ASME,
Section III, require-
ments for pressure
boundaries). | Hone. | None. | Hone. | 7 | Doesn't address specific issues; ASME
Section III must be followed. | | (97) | | 5.2.4 | Require 181 Program of
RCPG (GDC-32) to assess
the structural and leak-
tight integrity. | None. | 7 | 7 | 7 | Besed on requirements of 10 CFR 50.55e and detailed in ASME, Section XI. | | (98) | | 17.2 | Implement QA program. | Hone. | 7 | Hone. | 7 | Doesn't address aging per se; just states
that a OA program is required. | | (99) | | RGs
1.11 | Visual inspection of instrument lines. | Honi toring. | None. | Mone. | Mone. | | | (100) | | 1.45 | Systems for detection of leakage in the RCPS. | Mane. | AML development
of acoustic leek
monitoring. | Correlate leak rate with crack size to define acceptance limits. | None. | AHL has developed an acoustic lesk monitoring system from laboratory experiments. The system needs field validation. | | (101) | | 1.58, Rev 1 | Qualification for inspection personnel. | Monitoring. | ASME Section XI
developing criteria
for performance demon-
stration qualification
of inspectors. | | Setter training and
qualification pro-
cadures. Improved in-
spection methods for
coarse-grain materials
(welds, cost 33, etc.). | | | (102) | | 1.147 | No explicit reference
to aging; provides an
MRC acceptable list
of ASME approved code
cases applicable to
Section XI. | extension by provid- | RG revisions are mude
to include er exclude
appropriate Code Cases | M/A
). | N/A | ASME Code Cases are not mandatory. Code Cases provide a machanism to use alternate methods within jurisdiction of the code. The cases are usually superseded (enrulled) by revisions to the code, i.e., the case becomes part of the code. In other instances, the case may be reversed or dropped as an applicable method. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT
COLUMN 3 | AGING FEATURES COLUMN 6 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS COLUMN 7 | LIFE EXTENSION NEEDS | COMMENTS COLUMN 9 | |-----------------------|----------------------|--|--|--|---|--|--|--| | (103) | SURVEILLANCE (contd) | RGs (contd)
MJREG-1 9 61 | | | MSPE-12-4240 NUPLEX
report to be pre-
pared on reactor
recirculation lines
(see comments). | | | Description: Increase recirculation piping impaction intervals and percentages to comply with MAMES-1061. Develop crack growth curves for austentic as in MAC environment, considering IMSI and other weld treatments. Develop impaction/monitoring program for thermal embrittlement of duplex cast SS pump and valve bodies. | | (104) | | ASME
Section III
MB-3600 | | | Code requirements updated to include transient considerations startup testing for vibration and themsel displacements required. | | | Early plants designed to simplified criteria of ASME VIII and 831.1. | | (105) | | Section XI | Material and compo-
nent condition
assessment. | Ref. Info./data
bases as they apply
to requests for
licence extensions/
renewels. | keeping has passed | See other columns. | Ref. info/data
bases to support
extensions/ranssels. | As materials and components age, the
predictive capabilities for physical and
mechanical property changes must improve.
Since, during a plant's service life, an in-
creasing amount of information/data will be
available from surveillance programs, better
procedures to evaluate and use this informa-
tion/date can and must be developed. | | (106) | | | Surveillance. | | A new task group on
baseline examination
has been established. | See other columns. | Possible need to re-
quire a new besetine
examination for a
license extension
request. | | | (107) | | | Allows for inspec-
tions beyond 40 years. | Changes to inspec-
tion Plans A and B
which are currently
based on a 40-year
operating life based
on four intervals,
the sum of which
= 40. | SMG has implemented
revisions to IMA-
2400, which will
delete the 40-year
I limit currently con-
tained in Section XI.
Also reviewing need
for more frequent and
extensive inspections. | Extended and/or
enhanced surveillance
beyond 40 years. | Surveillance beyond
40 years, | | | (106) | | | Monitoring and testing. | Information/data
for trend curves. | Development of new
exam. techniques to
detect age-related
degradation and
fatigue being con-
sidered. | Information, data, and assessments. | Monitoring/testing techniques. | | | (109) | | | information and data for trend projections. | Records, informa-
tion/data. | A SWG is considering
development of a non-
mandatory appendix
for recordkeeping. | information and data for trend curves. | Records, information/
data. | This appendix would provide the utility with guidance as to the records needed to support a license extension request. | | COMPONENT | 18SUE
COLUMA 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES | AGING HEEDS
COLUMN 7 | LIFE EXTENSION MEEDS | CONNENTS
COLUMN 9 | |-----------|----------------------|-----------------|---|--|---|--|--|--| | (110) | SURVEILLANCE (cantd) | ASME (contd) | Fatigue failures. | Anticipate and avoid fatigue faitures. | Fatigue monitoring
technology developed
and demonstrated;
several utilities
proceeding. | Experience and test
data for high-cycle
effects. | Regulatory acceptance
of alternate approach
to design bases. | a) Faitures untitlely from cycles considered
in design. Design approach is conservative.
Component features included to preclude
fatigue faiture. Components have high
tolerance to flame. | | | | | | | | | | b) Fatigue crecking has occurred during operations: • vibration • rapid thermal cycling • pre-existing flams • other conditions not considered in design. | | (111) | | SS is 14 | Cracking in high pres-
sure piping in PMRs se
a result of corrosien,
vibratory and thermal
fatigue, and dynamic
loading. | . None. | Monė. | Hone. | None. | PAR pipe cracks * Priority - LOW RESOLVED, * Corrosion cracking in low-pressure piping is addressed in C-7. | | (112) | | 73 | Fatigue failure prob-
lems connected with
nozzie-thermal sleeve
assemblies. | Mone. | Hone. | 7 | 7 | Detached thermal sleeves - The thermal sleeves installed in the safety injection accumulator piping nozzle connections to the cold leg piping sere found at the bottom of reactor vessels. | | (113) | | 86 | IGSCC-caused leaks in
heat-affected zones of
the safe-end-to-pipe
welds. | None. | None. | 7 | 7 | Long-range plan for dealing with stress corrosion cracking in SUR piping - solution available. | | (114) | | 111 | Stress corrosion crack-
ing in stemm generator. | None. | None. | 7 | 7 | Stress corrosion cracking of pressure boundary ferritic steels in selected environments. | | ,(115) | | 119 | tions. | None. | Hone. | None. | None. | Piping review committee recommendations - "No
significant change in public safety will result
from resolution of this issue." | | (116) | | A-1 | None. | None. | None. | Hone. | Hone. | Weter hammer. | | (117) | | A-10 | None. | None. | None. | Hone. | None. | SUR feedwater nozzle cracking. | | COMPONENT
COLUMN 1 | COLUMN 5
18806 | REG. INSTRUMENT | AGING FEATURES COLUMN 6 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|----------------------|----------------------|--|--|------------------------------|-------------|----------------------
---| | (118) | SURVEILLANCE (contd) | GSIs (contd)
A-15 | Operation of Lift re-
suits in alow corrosion
of interior setal sur-
faces of the primery
coolant system, then
these products are
activated by neutron
flux and when circulated
through the reactor
plate-out occurs. | None . | Rone . | 7 | 7 | Primary coolant system decontamination and steam generator chemical cleaning. | | (119) | | A-42 | None. | None, | None. | None. | Mone. | Pipe cracks in BMRs * Priority - RESOLVED. | | (120) | | B-6 | None. | None. | None. | None. | None. | Loads, load combinations, and stress limits
• Priority - HIGH. | | (121) | | B-25 | 7 | None. | lione. | 7 | 7 | Piping Benchmark Problems. | | (122) | | c-7 | None. | None. | None. | 7 | 7 | PMR System Piping * Priority - RESOLVED. | # APPENDIX V REGULATORY INSTRUMENT FOR PRESSURIZER (INTERNALS AND SUPPORT PIPING) ## Understanding and managing aging of pressurizer, surge & spray lines shell, A-533, GL B, Class I. Cladding, Type 304 SS & NI-Cr-Fe Alloy · Sheath, inconel insulation MgO Fittings · Statically cast SS - Gt, CF8A and CF8M (W); SA 516 Gt. 70, Type 309L SS (CE, B&W); Type 306L SS (B&W) Cladding • Type 308L SS (CE), Type 304L SS (B&W) Surge line • Type 316 SS, cast SS-Gr. CF8M some (CE plants) • Type 316 SS Spray line Nozzles on main coolant pipe Thermal sleeve • SA 105 Gr. 2 (CE), Type 304 N SS (W) • Inconel SB-168 Stressors and Environment Operational transients, temperature, flow induced vibrations, stratified flows, thermal stripping, thermal shocks, heater mechanical wear and element burnout and erosion and corrosion Typical W pressurizer and connections Typical CE heater equipment | 0.12.11.10.11.11 | NDING AGING Environment Interactions) | MANAGING AGING | | | | | | | |---|--|---|--|---|--|--|--|--| | Sites | Aging Concerns | inservice inspections, Su | Mitigation | | | | | | | Nozzies and thermal sleeves Instrumentation Surge Spray Ferminal end dissimilar metal welds (between carbon steel components and stainless steel piping | Low and high-cycle thermal Erosion Low-Cycle thermal and mechanical fatigue | NRC requirements Volumetric and surface examination of 25% of butt welds including the following welds each inspection interval 10 CFR 50.55a, fWB-2500: All dissimilar metal welds All welds having cumulative usage factor equal to or greater than 0.4 All welds having stress intensity range of 2.4 S _m Same welds are required to be inspected | Perform more frequent examination of nozzle welds having high cumulative usage factor. Determine fatigue damage by on-line monitoring of coolant and piping temperatures, and flow rates in nozzles and horizontal portions of piping during operational transients, stratified flows, and thermal shocks. Perform nondestructive examinations and loose parts monitoring to assess status of thermal sleeves develop improved NDE method to detect crack growth in the base | Maintain full flow in spray line and operate it continuously to prevent stratified flow and thermal shock conditions Replace horizontal section of spray line with sloped section to prevent stratified flow condition Redesign piping to eliminate valve leakage Preventitive or predictive | | | | | | Cast stainless steel piping • Surge line • Spray line • Valves • Fittings | Low-cycle thermal and mechani-
cal fatigue
Thermal embrittlement
Erosion spray valve
Borlo acid Corrosion
Stem packing/wear and
degradation with age and
service life
Bellow degradation | Same werds are required to be inspected during each inspection interval Flaw detection and evaluation 10 CFR 50.55a, IWB-3000 Leakage Hydrostatic pressure tests 10 CFR 50.55a, IWB-5000 ASME Section III, NB-3210 and ASME Section XI, ISI Cycle counting of specified design transients | metal and welds Develop techniques to monitor actual degree of thermal embrittlement, e.g., develop improved NDE methods and tools using magnetic properties measurements and acoustic emission Monitor valve leakage Develop UT to detect flaws on cast stainless steel piping | maintenance for heater replacemen Use improved stem packing materials | | | | | | Heater sheeth fallures | Small LOCA via heater element and heater sleeve | Tech Spec's requirements • Cycle counting of specified design | | | | | | | | /essel wall | High and low cycle thermal fatigue | transients • Leakage rates • Δ T limits for heatup/cooldown | | | | | | | #### REGULATORY INSTRUMENT REVIEW FOR LWR PRESSURIZER VESSEL | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION MEEDS | COMMENTS
COLUMN 9 | |---|---|---|---|---|---------------------|--|---|--| | PRESSURIZER (LIMITED TO INTERNALS & SPECIALITY LIENS) | MEATER(S) PROBLEMS * THERMAL INDUCED: MECHANICAL HEAR, ELEMENT BURNOUT(S) | CFR6 | | | | | | | | (f) ^{**} | | (General
statement). | None. | None. | , | Regulations are nueded
that address aging of
pressure boundary com-
ponents. | Regulations are needed
that address license
renewel. | The Code of Federal Regulations (CFRs) does not explicitly eddress the internals of the pressurizer or the vessel and supporting aprey/surge piping. Since the pressurizer is part of the RCS pressure boundary, the rules set forth by the CFR principally apply to the vessel shell, the supports and apray/surge lines for design, fabrication, operation and preoperational testing. Applicable section moted for the pressurizer degradation issues are implied aging features for the internals and associated piping. | | (2) | | 10 CFR 50,
Appendix A,
Criterion 14 | The BCPS shell be design-
ad, fabricated and tested
so a "los probability" of
abrormal teskage and
gross rupture exists. The
criterion isplies that
the design shell account
for mechanical degregation
of the heater sheaths and
aleeves. | None - | 7 | Pressure boundary inter-
nate of the vessels
should be addressed in
the regulations. | Pressure boundary inter-
nate of the vessets
should be addressed in
the regulations. | Failure of the heater sheath and heater sleeve
have resulted in pressure boundary leaks. (Heater
burn-out is not a safety issue as these may be
replaced. Heater leakage, however, is a safety
issue.) | | (3) | | TSa
3/4.4.3 | Provides mandatory res-
toration requirements
for heater elements. | Mendatory surveit-
lance could provide
record for pressure
cycles. | 7 | N/A | Provides a record of
heater replacement, i.e.,
operating history good
or bad for the specific
pressurizer. | Provides aging management by requiring replacement of heaters to meintain a level of power (heater) input capacity, i.e., the heaters must always perform at a prescribed level, thus forcing surveillance and repair. | | (4) | | SEPS
(General
statement) | None. | None. | , | SAR need to extress
failure mechanisms of
the heaters, i.e., is
replacement the only
effective aging man-
symment procedure for
the
heaters? | Redundancy and ease of
heater replacement should
be evaluated for license
remass criteria. Test-
ing of heaters should in-
clude excessive current
leekage. | The pressurizer heeters are not explicitly addressed in the SRPs. Neater alseve failures have resulted in pressure boundary RCS failures. Defective heaters and poor design are the probable causes for the pressure boundary failures; however, aging may be a factor in the failures, e.g., searing and thinning due to rubbing action with supports caused by thermal growth. Although heaters are easy to replace, a technical safety issue exists because of the potential leakes path that could result in a primary containment leak. | | (5) | | 5.2.4 | Requires 181 program
to assess leaktight
integrity. | None. | 7 | Provides for selected
(ASME Section XI) code
inspection of welds for
the life of the plant. | Verify that the inspec-
tion is adequate for
license renewal. | | General Hotes: 1. A "T" indicates further study/investigation is needed. 2. For the GSIs, "resolved" means the generic safety issue is resolved, not necessarily the aging issue. 3. For smening of abbreviations, acronyms, and initialisms, used throughout, see acronyms on page xi, xii, and xiii of the report. | COLUMN 1 | COLUMN S
1887E | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |----------|-------------------|---------------------------------------|--|---|------------------------------|--|--|---| | (6) | HEATERS (contd) | RGs
(General
statement) | None explicit. | None explicit. | 7 | Revisions needed that
explicitly address the
aging of plant compo-
nents and systems. | Revisions needed that
explicitly address
life extension and
license renamel. | The MRC Regulatory Guides (RGs) do not explicitly address the internals of the pressurizer, | | (7) | | ASME Code
Section III
(General) | Mone explicit. | Mone explicit. | 7 | | Assurance that the
current replacement
methods/repair of
failed heaters are
adquate beyond the
plant's license
renewal date. | ASME codes requirements are primarity concerned with pressure boundary integrity; some sections of the code, however, cover other concerns, such as Section III NG that covers reactor core internals, not the pressure boundary. | | (8) | | 619e
651 13 | Extended overheeting of heaters, cyclic fatigue, and service weer. | Mone. | None; issue was
dropped. | Effects of overheating
on pressurizer
reliability. | Effects of pressurizer reliability on ticense extension. | Small breek LOCA from extended over-
heating of pressurizer heaters. | | (9) | | AMS
51.1-1903 PLR | Establishes the nuclear
safety criteria and func-
tional design require-
ments of structures,
systems, and components
of stationery MPPs. | Original design
criteria could
support LR. | 7 | Morre. | None. | Operations, maintenance, and testing require-
ments are covered only to the extent that they
affect design provisions. | | (10) | | 58.11 | Provides design criteria
for systems and equipment
necessary to achieve and
mintain a safe shutdown
of the reactor to cold
shutdown conditions from
a hot standby or post
accident condition. | Addressee safety
functions that are
closely aligned
with aging if not
correctly con-
trolled, e.g.,
reactivity, ECS,
heat removal, and
RCS integrity
including pres-
sure and inven-
tory control. | 7 | Mone. | None. | | | (11) | | 1656
323 | Ability to perform safety
function due to the effect
of aging must be addressed.
Types of aging include
vibration and weer, | | 7 | None. | Mone. | IEEE standards 323 as opposed to other instruments
reviewed recognizes the need for aging and defines
steps to address aging such as age conditioning
and natural aging criteria. | | (12) | | 741 | Provides criteria for pro-
tections requirements for
class IE power systems.
Protection from electrical
or mechanical damage or
failures within a time
frame too short for oper-
ator action. Doesn't in-
clude physical design
fectors such as fires,
pipe whip, etc. | | | | | The protection refers to sense commend and execute features, e.g., switch gear protection standby power protection and surge protection. Protection shall be designed to allow for periodic testing. | . . . | COMPONENT
COLUMN 1 | ISSUE
COLUMI 2 | REG. INSTRUMENT | AGING FEATURES
COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|---|---------------------------------------|---|---|---------------------|---|--|--| | (13) | WEATERS (contd) | IEEE (contd)
934 | Provides criteria for
replacement parts, both
construction and opera-
tion. Requires inspection
and testing of perts prior
to release for service. | | 7 | None. | None. | Standard determines selection of required parts
for Class IE equipment, e.g., identification and
failure review. Nowever, required design changes
are outside the scope of this standard. | | (14) | | 344 | Establishes recommended
practices to obtain data
to qualify that the equip-
ment will perform one SSE
after an OSE. Included
are tests for vibrational
aging, seismic aging plus
normal operation loads. | Acceptance and qualifying records, | 7 | None. | None. | | | (15) | SURGE & SPRAY LINES,
NOZZLE PROBLEMS
* STRATIFIED FLOM,
TRANSIENT THERMAL
LOADS, THERMAL
SHOCK, RESULTING
IN LOW-CYCLE THER-
MAL FATIGUE | CRB 50,
10 CFR 50,
Criterion 15 | RCS shall be designed for
sufficient margin to
assure that the design
condition not be exceeded
during normal operation
or anticipated operation-
al occurrences. This
criterion implies that
thermal shock and other
factors in the design of
the pressure boundary
should be included. | tone. | , | Revision needed to
sging or life of plant
considerations. | Revision needed to
address operations
beyond the plant's
license renewal date. | | | (16) | | TSe
3/4.4.9.2 | Provides for control over the spray mater Δr_s ; restricts Δr_s to a max. differential of 320°F. | Records for cycles. | 7 | N/A | Could provide a record of component service applicable to license removel, i.e., has the service exceeded TS temperature limits? | Provides aging management by restricting the temperature $\Delta T s_{\star}$ | | (17) | | 3.9.3 | Addresses structural integrity of pressure retaining components. | Design in accord-
ance with ASME III & 10 CRF-50, General
English Criteria
1,2,4,14 and espac-
ially 60C 815 that
stipulates the
design shall have
sufficient margins
such that operations
including loading
combinations and
transients will not
exceed the original
design conditions. | | None. | Are the original design assumptions valid for license renewal? | | | COMPONENT
COLUMN 1 | I STALE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES COLLING 6 | AGING MEEDS | LIFE EXTENSION NECOS | COMMENTS COMMENTS | |-----------------------|---|--|--
---|---|---|---|--| | (18) | SURGE & SPRAY LINES
(contd) | TSe (contd)
3.9.1 | Addresses fatigue and stress and meeting the requirements of 10 CFR-50 GDC #15. Specifically address the acceptability of the design relative the number of cycles and events expected over the life of the plant. | Provides acceptance
criteria applicable
to license renswel. | 7 | Verification of the number of cycles and events. | Adequate event records and operating history needed. Nethods needed to predict the eveitable fatigue life of the spray/surge lines at the end of the plant's license remains date. | | | (19) | | 1.167 | No explicit reference
to aging; however, pro-
vides an NRC acceptable
(ist of approved ASME
Code Cases for Section
XI. | The RG implies life
extension by pro-
viding acceptance
method for approved
(ASME) inspection
methods using cur-
rent Code Cases. | RG revisions are made
to include or exclude
appropriate Code Caees. | H/A
• | W/A | ASME Code Cases are not mendatory. This RG presents a MRC staff acceptable list of ASME council approved Code Cases for use in inspection and repeir of components as required by 10 CFR 50, Appendix A, and Section 50.55a. | | (20) | | 1.44 | Repair of RCPB lines.
Process controls to
minimize sensitization
in stainless steel
welds. | Hone, | Hone. | Better understanding
of the relationship
between welding process
and sensitization is
needed, | Determination of tife
expectancy of sensitized
material and nuclear
grade stainless steel
is needed. | IRC program on "Evaluation of Welded and
Repair-Weld Stainless Steel for LUR
Service" initiated work in this area but was
not completed, A small effort may be ongoing. | | (21) | | Admit Code
Section III | Addresses fatigue. | Fatigue curve
revisions. | Section XI, SMG on Operating Plent Criteria is reviewing fatigue curves in Section III to determine if they can be revised to accommodate operation beyond 40 years. ASME SMG on PLEX has recommended that appropriate XI counittees investigate more frequent MDC on surge line welds than currently required by Sec. XI, 181. | Measurement of material fatigue life. | Improved end-of-life
projections, 40 years
and beyond. Accurate
recording and records
for pressure and
thermal transients are
needed to determine
fatigue demage to
appray and surge lines. | Studies are under way to assess the megnitude of the effects of actual environmental conditions. Code curves are based on smooth specimens in air at room temperature, whereas as materials in service have much rougher surfaces and are exposed to flowing coolant at operating temperatures. The actual surfaces are more prome to crack initiation. Studies and research to assess magnitude of effect of environmental factors could result in need for new Regulatory Guide, Regulatory instruments and/or code revisions. | | (22) | erosion (wall
thirming) | MB-3210 Special
considerations
of MB-3121
(Section III) | Material subject to erosion, corrosion, and mechanical shree lon must have additional well thickness to account for these enticipated conconditions. | tions explicit; hos-
design should provid
guidence for the ade
quacy of the design
beyond the 40-year
intervet. | | Implied in the design criteria. | Suidence is meeted to
cover the limits of
component deterioration. | MB-3121 states "Material subject to thinning by corrosion, erosion, sechanical abresion, or other environmental effects shall have provision saids for these effects during the design or specified life of the component by a suitable increase in or addition to the thickness of the base metal over that determined by the design formulas." Rules cover design and construction requirements but do not cover deterloration. | | COMPONENT COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION MEEDS | COMMENTS
COLUMN 9 | |--------------------|---|--|---|---|---------------------|--------------------------------------|---|---| | (23) | SURGE & SPRAY LINES
(contd) | esi 47 | Thermal stress resulting from sustained operation of MPI. | None. | ilone. | 7 | Effects on pressurizer reliability at plants at which pressurizer has been over heated and cooled. | MRC concluded there is no direct safety
laptication of overfeeding and over-
cooling pressurizer with MPI. | | (24) | | AMS
51.1-1983 PMR | Establishes the nuclear
safety criteria and
functional design require-
ments of structures,
systems, and components
of stationary MPPs. | Original design
criteria could
support LR. | ? | isone. | Norse. | 51.1 is for PMRs and 52.1 is for BMRs. The
stendards are essentially the same. Operations,
maintenance, and testing requirements are covered
only to the extent that they affect design
provisions. | | (8) | | 58.11 | Provides design criteria
for systems and equipment
necessary to achieve and
meintain a safe shutdown
of the reactor to cold
shutdown conditions from
a hot standby or post
accident condition. | Addresses safety
functions that are
closely aligned
with aging if not
correctly controlled
e.g., reactivity, EC
heat removel, and EC
integrity including
pressure and inven-
tory control. | S | None. | Mone. | | | (26) | SPRAY NEAD * THERMAL INDUCED, EMBRITTLEMENT * EROSION | CFRs
10 CFR 55a,
Codes and
Standards | Regulation refers to ASME
Section III for dealgn of
class 1 components.
Implied that erosion will
be addressed in piping
system design. | None. | ? | Revision needed to
address aging. | Revision needed to
address operation
beyond the plant's
license renewal
date. | | | (27) | | TSa
3/4.4.9.2 | Provides for specific
Δ1 (100°F) heatup and
Δ1 (200°F) cooldown in
any 1-hour period and max
spray water differential
at 320°F. | Records for cycles, | 7 | M/A | Could provide a record
of component service
applicable to license
renewel, i.e., has the
service exceeded TS
temperature limits? | Provides aging management by restricting the temperature $\Delta T s_{\star}$ | | (28) | | Section III | None. | None. | 7 | None. | None. | ASME code requirements are exclusively concerned with pressure boundary integrity. | | (29) | | M8-3210 Special
considerations
of M8-3121
(Section III) | Material subject to erosion, corrosion, and mechanical abrasion sust have additional sell thickness to account for these anticipated conditions. | None explicit; how-
ever, design should
provide guidence for
the adequacy of the
design beyond the
40-year interval. | 7 | Implied in the design
criterie. | Guidance is needed to
cover the limits of
component deterioration. | NB-3121 states "Material subject to thirming by corrosion, erosion, exchanical abrasion, or other environmental effects shall have provision made for these effects during the design or specified life of the component by a suitable increase in or addition to the thickness of the base matel over that determined by the design formules." Rules cover design and construction requirements but do not cover deterioration. | | | | | | | | | | Monte par on the Antal Marci laigring. | | COMPONENT COLUMN 1 | ISSUE
COLUMI 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING
NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS COLUMN 8 | COMMENTS
COLUMN 9 | |--------------------|--|---|---|---|------------------------------|--|---|---| | (30) | SPRAY HEAD (contd) | QSI 47 | Thermal atress resulting from sustained operation of MPI. | Hone. | ltone. | 7 | Effects on pressurizer reliability at plants at which pressurizer has been overfed and cooled. | MRC concluded there is no direct safety implication of overfeeding and over-cooling pressurizer with MPI. | | (31) | | AMS
51.1-1983 PMR
52.1-1983 BMR | Establishes the nuclear
safety criteria and
functional design require-
ments of structures,
systems, and components
of stationary MPPs. | Original design
criteria could
support LR. | 7 | None. | None. | 51.1 is for PMRs and 52.1 is for BMRs. The standards are essentially the same. Operations, maintenance, and testing requirements are covered only to the extent that they affect design provisions. | | (32) | | 58.11 | Provides design criteria
for systems and equipment
necessary to achieve and
maintain a safe shutdown
of the reactor to cold
shutdown conditions from
a hot standby or post
accident condition. | Addresses safety
functions that are
closely aligned
with eging if not
correctly controlled
e.g., reactivity, RC
heat removal, and RC
integrity including
pressure and inven-
tory control. | Š | | | | | (22) | SHELL INTERNAL SHELL BARREL IN STEAM SPACE: NIGH & LOM CYCLE THER- HAL BENDING AT WAYER TO STEAM INTERFACE | CFRe
10 CFR 55a,
Codes and
Standards | Regulation references design in accordance with ASME Code Section III for class I components. Implied that the design will address high-and low-cycle fatigue, bending stress, etc. | Moné . | | Regulation revision needed to address aging. | Regulation revision
needed to address
operations beyond the
plant's license re-
newal date. | | | (34) | | TSs
3/4.4.9.2 | Provides for specific
Δ1 (100°F) heatup and
Δ1 (200°F) cooldown
in any 1 hour period
and asx, spray water
differential at 320°F. | Records for cycles. | 7 | W/A | Could provide a record of component service applicable to license reneal, i.e., has the service exceeded TS temperature limits? | Provides aging management by restricting the temperature $\Delta \text{Ts.}$ | | (35) | | 2.1.1 | Establishes mandetory
high-temperature limit
for the pressurizer
(highest reactor coolant
temperature). | Auto trip provides records of transient conditions. | , | N/A | Could provide a record
of transient conditions
and monitoring of
cyclic events. | Provides aging management by establishing the upper
material temperature limits. | | (36) | | 2.1.2 | Establishes mandetory
high-pressure limit for
the reactor coolant
system. | Auto trip provides records of transient conditions. | , | N/A | Could provide a record
of trensient conditions
and monitoring of
cyclic events. | Provides aging management by establishing the high-pressure limits. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT
COLUMN 3 | AGING FEATURES COLUMN 6 | LIFE EXTENSION FEATURES COLUMN 5 | CLERRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION NEEDS | COUNTS
COLUMN 9 | |-----------------------|---------------------------|-----------------------------|--|---|---|--|---|--| | (37) | SHELL INTERNAL
(conkd) | 3.9.3 | Addresses structural
integrity of pressure
retaining components. | Design in accordance with ASNE 111 and 10 CFR 50 General Design Criteria 1, 2, 4, 14, 15, and especially GDC #15 that atipulates the design shall have sufficient eargins such that that operations including loading combinetions and transfer will not exceed the original design conditions. | 7 | None . | Are the original design assumptions valid for license renewal? | | | (38) | | 5.2.2 | Overpressure protection. | Overpressure protection. | ? | N/A | Probably adequate for
license renswel for this
specific event. Requires
protection for the "life
of plant" events. | Review stipulates that overpressure protection must
be available (safety/relief valves) for the pres-
surizer 010% of sliquible pressure for transients
or operational occurrences one or more times during
the life of the plant. | | (39) | | 3.9.1 | Addresses fatigue and
stress and secting the
requirements of 10 CFE
50 GDC #15. Specifical-
ly address the accepta-
bility of the design rela-
tive the number of cycles
and events expected over
the life of the plant. | Provides acceptance
criteria applicable
to license renewal. | | Verification of the number of cycles and events. | Adequate event records
and operating history
needed. Nethods are
needed to predict the
available fatigue life
of the pressurizer shell
at the end of the plant's
license renewal date. | | | (40) | | ASRE Code
Section III | Requalification of components. | Requalification
of components. | A new appendix is under consideration which may be used to requalify components which have exceeded the rules for cyclic operation in Section III, MS-3222.4. A task group has been formed to address the issue. This also applies to Section XI. | Evaluate new appendix. | Requelification Rules
for components. | | | • | ¢ | | |---|---|---| | ٠ | | | | ŧ | ŕ | ٠ | | COMPONENT
COLUMN 1 | ISSUE
COLUM 2 | REG. ENSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INSTINCTIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|---------------------------|---------------------------------------|---|---|--|-------------|--|---| | (41) | SHELL INTERNAL
(contd) | ASKE Code
(contd) | fatigue. | Fatigue curve
revisions. | Section XI, SNG on
Operating Plant Cri-
teria is reviewing
fatigue curves in
Section III to deter-
mine if they can be
revised to accommo-
date operation beyond
40 years. | ltane. | Improved end-of-life
projections, 40 years
and beyond. | Studies are under way to assess the megnitude of
the effects of actual environmental conditions.
Code curves are besed on smooth specimens in air at
room temperature, whereas meterials in service have
much rougher surfaces and are exposed to flowing
coolant at operating temperatures. The actual sur-
faces are
more prone to crack initiation. Studies
and research to assess megnitude of effect of
of environmental factors could result in need for
new Regulatory Guide, Regulatory instruments and/
or code revisions. | | (42) | | Section XI | Condition assessment. | Requalification
of systems and
components. | Consideration of development of new Article IMX-8000, Requalification for Fatigue III for An ASSE MG has been formed on fatigue in NPPs. The goed of the MG is to provide a mechanism for retief when the fatigue design limit is reached. (The limit sould be determined by developing monitoring and evaluation techniques.) | | Requalification of
systems and components
following expiration of
operating license. | | | (43) | | GS1 47 | Thermal stress resulting
from sustained operation
of HPI | None. | None. | 7 | Effects on pressurizer
reliability at plants
at which pressurizer
has been overfed and
cooled. | MRC concluded there is no direct safety
implication of overfeeding and over-
cooling pressurizer with MPI | | (44) | | AMS
51.1-1983 PLR
52.1-1983 BLR | Establishes the muclear
safety criteria and
functional design require-
ments of structures,
systems, and components
of stationary MPPs. | Original design
criteria could
support LR. | 7 | tione. | None. | 51.1 is for PMRs and 52.1 is for BMRs. The
standards are essentially the same. Operations,
maintenance, and testing requirements are covered
only to the extent that they affect design
provisions. | | (45) | | 58.11 | Provides design criteria
for systems and equipment
necessary to achieve and
maintain a safe shutdown
of the reactor to cold
shutdown conditions from
a hot standay or post
accident condition. | Addresses safety
functions that are
closely aligned
with aging if not
correctly controlled
e.g., reactivity, Rf
heat removal, and RC
integrity including
pressure and inven-
tory control. | :\$
:\$ | None. | Hone. | | | COMPONENT
COLUMN 1 | 1SSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES | AGING MEEDS
COLUMN 7 | LIFE EXTENSION NEEDS | COUNCENTS
COLUMN 9 | |-----------------------|---|---------------------------------------|---|---|--|--|--|--| | (46) | THERMAL SLEEVE(S) * THERMAL STRESS: FATIGUE | TSa
3/4.4.9.2 | Provides for specific
ΔT (100°F) heatup and
ΔT (200°F) cooldown
in any 1-hour period
and max. spray water
differential at 320°F. | Records for cycles. | , | N/A | Could provide a record of
component service applicable to license rensuel,
i.e., has the service ex-
ceeded IS temperature
limite? | Provides aging management by restricting the temperature $\Delta \tau_{n}$. | | (47) | | 2.1.1 | Establishes mendatory
high-temperature limit
for the pressurizer
(highest reactor coolant
temperature). | Auto trip provides
records of transient:
conditions. | ,
, | N/A | Could provide a record of
transient conditions and
monitoring of cyclic
events. | Provides aging menagement by establishing the upper
material temperature limits. | | (48) | | 3.9.1 | Addresses fatigue and
stress and meeting the
requirements of 10 CFR
50 GDC #15. Specifical-
ly address the accept-
ability of the design
relative the number
of cycles and events
expected over the
life of the plant. | Provides acceptance
criteria applicable
to license renewal. | 7 | Verification of the
number of cycles and
events. | Adequate event records
and operating history
needed. Methods are
needed to predict the
evaluable fatigue life
of the pressurizer shell
at the end of 40 years. | | | (49) | | Section XI | Fatigue. | Fatigue curve
revisions. | Section XI, SMG on
Operating Plant Cri-
teria is reviewing
fatigue curves in
Section III to deter-
mine if they can be
revised to accommodate
operation beyond 40
years. | Measurement of material
fatigue life. | laproved end-of-life projections, 40 years and beyond. Accurate recording and records for pressure & therms! transfants are needed to determine fatigue damage to spray and surge lines. | Studies are under way to assess the magnitude of the effects of actual environmental conditions. Code curves are based on amooth specimens in air at room temperature, whereas materials in service have much rougher surfaces and are exposed to flowing coolant at operating temperatures. The actual surfaces are more prome to crack initiation. Studies and research to messes magnitude of effect of environmental factors could result in need for rest Regulatory Guide, Regulatory instruments and/or code revisions. | | (50) | | AMS
51.1-1983 PMR
52.1-1983 BMR | Establishes the nuclear
safety criteria and
functional design require-
ments of structures,
systems, and components
of stationary MPPs. | Original design
criteria could
support LR. | 7 | None. | Norre. | 51.1 is for PARs and 52.1 is for BARs. The standards are essentially the same. Operations, as intenance, and testing requirements are covered only to the extent that they affect design provisions. | | (51) | CORROSION SNEATHES: CHEMI- CALLY INDUCED IGSCC & FATIGUE. GENERAL ROMATED CODLANT LEAKS BOLTING/CLOSKRES: SCC, LUBRICA- YION, MOISTURE ENVIRONMENT | CFRs 10 CFR 55a, Codes and Standards | Regulation requires de-
sign, fabrication and con-
struction in accordance
ASME Code Section III,
class I components. Code
requires attention given to
corrosion, erosion, envi-
ronmental effects; this
implies the regulation
addresses the aging issue. | None. | 7 | Hone. | None. | Improvements in the ASME Code are needed to address deterioration of materials. | | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING MEEDS | LIFE EXTENSION NEEDS | CONNENTS
COLUMN 9 | |---------|-----------------------|-------------------|---|---|---|---|--|--|---| | | (52) | CORROSION (contd) | SRP6
5.2.3 | Materials are reviewed
for suitability for the
service. Review of
menufacturing and welding
is also included. | None. | ? | None. | Mone. | | | | (53) | | RGs
1,45 | Defines leak detection
methods for RCFB leaks
that monitor potential
changes in containment
environment, such as
increasing humidity. | Should provide records of past plant conditions and current leak status for evaluation of license removal applications. | AML has developed
an accustic method
for leak monitoring. | is the current RG
position adequate for
aging management? | Is the current RG
position adequate for
license renewal? | The AML accustic laboratory experimental methods need to be verified by field tests. | | | (54) | | ASSE Code
Ne-3210 Special
considerations
of Ne-3121
(Section III) | Requirements implied
for the specific pressu-
rizer parts. The intent
of the code is bese
meterial subject to
erosion, corrosion, and
mechanical ebrasion that
must have additional wall
thickness to account for
the anticipated
conditions. | None explicit;
how-
ever, design should
provide guidance for
the adequacy of the
design beyond the
40-year interval. | 7 | Implied in the design criteria. | Quidance is needed to
cover the limits of
component deterioration.
Adequate monitoring is
needed to detect boric
acid leakage and
corrosion. | MB-3121 states "Material subject to thinning by corrosion, erosion, sechanical abrasion, or other environmental effects shall have provision made for these effects during the design or specified life of the component by a suitable increase in or addition to the thickness of the base metal over that determined by the design formulas." Rules cover design and construction requirements but do not cover deterioration. | | V
11 | (55) | | CSI A-16 | Plateout of activation products; increase in occupational doses. | None, | Issue was resolved upon issuance of guidance to utilities. | Long-term effects of
chemical decontamin-
ation agents on the
primery coolant system. | | See MUREG/CR-2963. | | | (56) | | AMS
51.1-1963 PMR | Establishes the nuclear
safety criteria and
functional design require-
ments of structures,
systems, and components
of stationary MPPs. | Original design
criteria could
support LR. | 7 | None. | Name. | Operations, maintenance, and testing requirements are covered only to the extent that they affect design provisions. | | | (57) | | 58.11 | Provides design criteria
for systems and equipment
necessary to achieve and
maintain a safe shutdom
of the reactor to cold
shutdom conditions from
a hot standby or post
accident condition, | Addresses safety functions that are closely aligned with aging if not correctly controlled e.g., reactivity, R heat removal, and RC integrity including pressure and inventory control. | :\$ | None. | None. | | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS | LIFE EXTENSION NEEDS COLUMN 8 | COMMENTS COLUMN 9 | |-----------------------|---|---|---|---|---------------------|--|--|--| | (58) | SURVEILLANCE: * TESTING * INSPECTION * MAINTENANCE & REPAIRS * NOE | CFRs
10 CFR-50,
Appendix A,
Criterion 32 | Regulation requires the
RPBC be designed to
facilitate periodic in-
spections. | Inspection records could establish integrity or condition of the component. | 7 | N/A | Verify that inspection
records are adequate for
license renewal. | | | (59) | * INFORMATION/DATA -FREQUENCY -DATA COLLECTION -DATA EVALUATION -TREND CURVES | 10 CFR-50,
Appendix B | Regulation requires a QA
plan for design, oper-
ations and testing. | AA documentation
will assist in
license renewel
process. | 7 | N/A | Verify that the QA docu-
mentation is adequate for
current license renewal
needs. | | | (60) | -RECORDING KEEPING | 10 CFR-55a,
Codes and
Standards | Regulation requires ISI
in accordance with ASME
Section XI. | 131 records will
assist in license
renewal processes. | , | M/A | ISI intervals and excep-
tion allowed may not
fully address license
renewal concerns or
requirements. | | | (61) | | TSe
3/4 4.0.2 &
4.0.5 | Provides surveitlance
intervals and references
ASME Code Section XI
for class 1 components. | Component status records. | 7 | H/A | Records could be used for
license renewal, i.e.,
verify the history of
component integrity. | Should provide history of component for license renewal application. | | (62) | | 3/4.4.3 & including 4.4.3.1 4.4.3.2 4.4.3.3 | IS with its surveillance
requirements dictate the
electrical heater capa-
city and water level of
the pressurizer. | Component status records. | 7 | N/A | Records could be used for
license renewal, i.e.,
verify the history of
component integrity. | | | (63) | | 6.0 (Adminis-
trative con-
trols) 6.10.1 | Lists mandatory 5-year
retention records list. | Provides record
history of compon-
ents and systems. | | W/A | May require longer reten-
tion period than 5 years
for principal inspections,
item 6.10,1,b. and d. to
be applicable for license
renewal. | | | (64) | | 6.10.2 | Lists mandatory life of
plant period for plant
retention records. Prin-
cipal interest is item
6.10.2 e. which specifies
the record keeping time
for transients or oper-
ating cycles. | Provides record his-
tory of components
and systems. | 7 | M/A | Could provide sufficient information and records for QA, 181, water quality and others, including specific records for component transient conditions, i.e., 18 table 5.7. "Component Cyclic or Transient Limits." | 1 | | (65) | | 53Pa
5.2.4 | Required ISI program
to assess leaktight
integrity. | None. | 7 | Provides for selected
(ASME Section XI) code
inspection of welds for
the life of the plant. | Is inspection adequate for ticense renewal? | Inspection are to be in accordance with 10 CFR-50,
Appendix A, Criterion 32 and 10 CFR-55a and as
detailed in ASME Section XI. | | (66) | | 17.2 | Addresses meintenence
and testing relative
the implementation of
a Quality Assurance plan. | Records of mainten-
ance and testing. | 7 | is in-place QA plan
and record keeping
adequate for aging
management records? | Is the QA pian adequate
for license renewal? | The SRP does not explicitly address aging or license rensual, only that a QA plan is required. | | COMPONENT
COLUMN 1 | COLUMN S
Leane | REG. INSTRUMENT
COLUMN 3 | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES | AGING MEEDS COLUMN 7 | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|----------------------|--------------------------------------|--|--|--|--|--|--| | (67) | SURVEILLANCE (contd) | RGs
1.50 | Establishes guidance
for the qualification
of MDE staff who
perform inspections,
tests and examinations
for MPPs. | Provides document-
ation of staff
qualifications and
quality assurance
records (of staff)
for the plant
OA plan, i.e.,
records needed for
license renewal. | ? | teproved qualification
guidence may be neces-
sary to fully address
aging concerns. | Improved qualification
guidance may be neces-
sery for LR. | References AMSI #45.2.6-1978. | | (68) | | Safety Guide 30
(from RG 1.30) | Establishes regulatory position for QA requirements relative to testing of electrical equipment. | GA documentation. | 7 | None. | Hone. | References 10 CFR 50, Appendix B, QA criteria
for MPPs. | | (69) | | ASME Code
Section XI
(general) | Meterial and component condition assessment. | Ref. info./deta
bases as they
apply to requests
for extensions/
renewels. | New normandstory
appendix on record-
keeping has pessed
the SMG-PLEX. | See other columns. | Ref. Info/Data
Pases to support
extensions/renewels. | As materials and components ege, the predictive capabilities for physical and mechanical property changes must improve. Since, during a plant's service life, an increasing amount of information/data will be available from surveillance programs, better procedures to evaluate and use this information/data can and must be developed. Stratified flow and thermal shock are major stressors in the base matel and welds. Weld metal impactions alone are insufficient for mechanical property changes. | | (70) | | Section XI | Surveillance. | Hew baseline exam-
ination require-
ments have been
established, | A new task group
on baseline
examination, | See other columns, | Possible need to require a new baseline examination for a license extension request. | | | (71) | | | Allows for inspec-
tions beyond 40 years. | changes to
inspec-
tion Plens A and
8 which are cur-
rently based on a
40-year operating
life based on four
intervals, the sum
of which = 40. | SWR has implemented revisions to JMA-
2400, which will delete the 40-year limit currently conteined in Section XJ. Also, reviewing need extensive inspections. ASSE PLES SWG is also reviewing inspection Plan A for application to PLEX or should a new plan (of higher reliability) be developed. | Extended and/or enhanced surveillance beyond 40 years. | Surveillance beyond
40 years. | The ASME PLEX SMG is reviewing the Inspection Plan A to determine if it should be used. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS | LIFE EXTENSION NEEDS
COLUMN 8 | COMMENTS
COLUMN 9 | |-----------------------|----------------------|----------------------|---|---|--|---|--|---| | (72) | SURVEILLANCE (contd) | ASME Code
(contd) | Monitoring and testing. | Information/Data
for trend curves. | Development of new
exam. techniques to
detect age-related
degradation and
fatigue being
considered. | Information, data, and assessments. | Monitoring/testing
techniques. | | | (73) | | | Information and data
for trend curves
projections. | Records, Informa-
Data. | SMG is considering
development of non-
mandatory appendix
for recordkeeping. | Information and data for trend curves. | Records, information, and data. | This Appendix would provide utilities with guidance as to the records needed to support a license extension request. | | (74) | | | fatigue failures. | Anticipate and avoid fatigue failures. | Fatigue monitoring
technology developed
and demonstrated;
several utilities
proceeding. | Experience and test
data for high-cycle
effects. | Regulatory acceptance
of alternate approach
to design bases.
Addition of fatigus
curves to high cycles
is needed for life
extension. | a) failures unlikely from cycles considered
in design. Design approach is conservative.
Component features included to preclude
fatigue failure. Components have high
tolerance to flaws. | | | | | | | | | | b) Fatigue cracking has occurred during operating: vibration rapid thermal cycling pre-existing flace other conditions not considered in design. | | (75) | | Table IMB-2500 | Meld integrity of
heater penetration welds
require visual inspec-
tions. | Records and accept-
ance Standards. | tione. | Frequency of examination. | Justify the change in
151 interval. (The
existing frequency may
not be sufficient for
ticense renewel.) | Section XI in Table 1MB-2500 specifically addresses the pressurizer; however, only the pressure vessel, piping, nozice, boits and hydrostatic/leakage tests are addressed. The code does not address the pressurizer internals. | | (76) | | GISA
GSI 8-47 | Long-term degradation of
Class 1, 2, 3 component
supports. | ISI requirements. | issue was dropped
from further
consideration. | Characterize long-term
degradation of com-
ponent supports. | Level of ISI inspec-
tion needed to verify
adequacy of supports. | NAC referenced ASME Code, Section XI and QA Program before dropping issue. | | (77) | | AMS
3.1 | Provides criteria for
selection, qualification,
and training of personnel
for stationary nuclear
power plants. | Provides record
on training of
staff. | 7 | None. | Mone. | | | (78) | | 3.2 | Provides recommendations and requirements for administrative controls, including written procedures, and GA program to help assure that activities of NPPs are carried out without risk to heelth and safety of the public. | Administrative in-place controls will probably be required for LR. The associated QA documentation will be useful for LR. | 7 | None. | None. | Among the activities covered under this standard are design changes, fabricating, cleaning-decontamination, inspecting, testing, maintaining, and repairing. | | COMPONENT
COLUMN 1 | 1\$SUE | REG. INSTRUMENT | AGING FEATURES COLUMN 6 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES
COLUMN 6 | AGING WEEDS
COLUMN 7 | LIFE EXTENSION MEEDS | COMMENTS
COLUMN 9 | |-----------------------|----------------------|------------------------------|--|---|---------------------------------|-------------------------|---|--| | (79) | SURVEILLANCE (contd) | ANS (contd)
51.1-1983 PWR | Establishes the nuclear
safety criteria and
functional design require-
ments of structures,
systems, and components
of stationary MPPs. | Original design
criteria could
support LR, | , | None. | Mone. | Operations, maintenance, and testing requirements are covered only to the extent that they affect design provisions. | | (80) | | 58.11 | Provides design criteria for systems and equipment necessary to achieve and meintain a safe shutdown of the reactor to cold shutdown conditions from a hot standby or post accident condition. | Addresses safety
functions that
one closely
aligned with aging
if not correctly
controlled, e.g.,
reactivity, RSC heat
removal, and RCS
integrity includ-
ing pressure and
immentory control. | 7 | , | Is the design criteria
velid for LR? | | | (81) | | 166E
336 | Provides minimum re-
quirements for inspec-
tion and testing of
Class IE power,
instrumentation and
control equipment dur-
ing construction phase. | Records of con-
struction may be
applicable to LR. | 7 | None. | Morve. | Provides a criteria for correct installation which could effect aging aspects of the equipment after start-up and operation. Class IP is equipment that is essential to emergency shutdown, containment isolation, RCC, and CHR. | # APPENDIX VI # REGULATORY INSTRUMENT REVIEW FOR EMERGENCY DIESEL GENERATOR # Understanding and managing aging of emergencey diesel generators Principal Diesel Engines In Nuclear Service #### Manufacturer ALCO Allis Chalmers Caterpillar Cooper Bessemer Fairbanks Morse Electro-Motive Division Nordberg Transamerica Delaval Worthington Others #### Materials: (typical) Alloy steels, welded steel plates, castiron including, gray, aluminum, stellite seats, forged steels, ductive irons, non metallic paskets, hoses, seats #### Capacities: HP 215 to 670 per cylinder or 800 HP to 8390 HP KW ratings 50, 500, 1200, 3000, 6000 #### Stressors: Cooling water, lubricating oil, fuel oil, starting air, Intake and exhaust, deterioration, dynamic stress, vibration, thermal fatigue, wear and harsh testing | | STANDING AGING
& Enviroment Interations) | MANAGING AG | ING | |--|---|---
--| | Sites | Aging Concerns | Inservive Inspection, Serveillance | Mitigation | | Instrument and control systems Governor Sensors Relays Startup component Fuel system Piping on engine Injector pumps Starting system Controls Starting air valve Starting air valve Starting motors Air compressor Switchgear system Breakers Relays Instrument and controls Cooling system Pumps Heat exchangers Piping Lubricating system Heat exchangers Pumps Lube oil | Bervironmentally induced: dust, water, heat, oil, chemical, etc. Maintenance errors: inadequate training, maladjustments, etc. Fast starts and other regulatory induced factors Design inadequacy, wrong application, or poor component Operation induced: inadequate training and skills Vibration induced Fuel or lubrication degeneration Gasket, seal, or organic material degeneration Inadequate spares: quality, strorage, ordering problems, data and specifications Corrosion, oxidation Thermal stress Manufacturing or quality problems Fatigue not related to vibration Metal fatigue Wear Bacterial action | NRC Requirements RC 1.9surveillance, maintenance, periodic testing RG 1.108routine testing, maybe with drawn due to RG 1.9 revisions General letter 83.41"fast cold" starts 10-CFR-50, appendix A, criterion 4, 5, 17, 18 & 50 periodic testing 10-CFR-5, appendix B, section XI requires components & system to perform satisfactorily 10-CFR-50, 55a Codes & Srd - ASME BPVC section III, IX, IEEE STD 279 TS 3/4 8.1 surveillance/inspection for operation & shutdown status GSI B-56-improve reliability of Eng. IEEE standard acceptable for use by NRC-RG 1.9 | Integrated EDG program of testing inspection, monitoring, trending and maintenance activities: • Testing/trending, change testing to a slower start test and acquisition of these testing parameters for trending • Improved inspection of weekly, monthly, and yearly to determine envioronmental stressors more effectively • Maintenance responsive to test & inspection, e.g., do not over he unless inspection and trends indicate the need • Increased training for EDG Staff in on-site maintenance • Systen modifications to mitigate stressors | #### REGULATORY INSTRUMENT REVIEW FOR EMERGENCY DIESEL GENERATORS | COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION
FEATURES
COLUNN 5 | CLIRRENT INITIATIVES COLUMN 6 | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS
COLUMN 8 | COMMENTS
COLUMN 9 | |---|--|--|---|--|---|-------------------------|--|---| | EMERGENCY
DIESEL
GENERATOR
(1) | CYCLIC FATIGUE,
INCLUDING VIBRATION
AND SERVICE MEAR | CFBS
10 CFB 50
Appendix B | Section XI of Appendix 8 requires test program to assure that components and system perform correctly. | Provides records
and performance
history for EDGs. | None. | None. | Are test documents/
records adequate for LR? | Requires that written test procedures that address proof test prior to installation, preoperational tests and operational tests. | | (2) | | Appendix A | General Design Criteria including criterion 2, 4, 5, 17, 18, and 50. Of these, 18 is most important as it provides aging guidance by requiring periodic testing and inspection to evaluate component condition. | Provides records
and performance
history for EDGs. | Interpretation of
this CFR may change
if the suggested
revisions to 1.9 are
approved. | None. | None. | 10 CFR 50, Appendix A GDC, criterion 17, requires an onsite EDG to provide onsite power to safety-related components and systems. | | (3) | | SMPs
9.5.7 | EDG Lub oil system -
review addresses dry
starts or lack of Lub
during starts. The SEP
requires a dedicated
system for wearing parts. | None. | None. | None. | The records (history) of
the EDG should indicate
adequate performance to
permit use beyond 40
years. | | | (4) | | NGs
1.32 | Regulatory position for
design, construction and
operation of MPPs; aging
features implied. | None. | None. | None. | See comment. | Refers to IEEE standard 308-74 as acceptable criteria for design, general operation, and testing of MPPs. The RG does not address license remmal. | | (5) | | ASPE Code
Section III
Section XI | EDGs by definition are
Class 1, 2, and 3
components; however, the
EDGs are not pressure
vessels or piping, etc. | Name. | R/A | None. | None. | The ASME codes as required in 10 CFR 50.55s mandate ISI. These requirements rarely involve EDG unless a specific part is designed and manufactured in accordance with the Code. | | (6) | | 1646
308 | Design base criteria for
class IE equipment to
enable them to most their
functional requirements. | Provides an
acceptable design
base for possible
LR. | None. | None. | ltone. | Includes power systems, e.g., diesel generators: design base includes malfunctions, accidents or operating modes that could lead to degradation of the systems. Malfunctions are defined as natural phenomena, e.g., environmental factors of pressure, humidity, temperatures, and accidents, e.g., fires. | | (7) | | 323 | Ability to perform safety
function due to the ef-
fect of aging must be ad-
dressed. Types of aging
include vibration and
mear. | Acceptance and qualifying records. | tione. | None. | None. | IEEE standard 323 as opposed to other instruments reviewed recognizes the need for aging and defines steps to address aging such as age conditioning and natural aging criteria. | General Notes: 1. A #7# indicates further study/investigation is needed. 2. For the GSIs, "resolved" means the peneric safety issue is resolved, not necessarily the aging issue. 3. For meaning of abbreviations, acronyms, and initialisms, used throughout, see acronyms on page xi, xii, and xiii of the report. | COMPONENT
COLUMN 1 | 15SUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING MEEDS
COLUMN 7 | LIFE EXTENSION MEEDS | COMMENTS
COLUMN 9 | |-----------------------|--|--------------------------|--|--|---|-------------------------|--|--| | (8) | | IEEE (contd)
387 | Provides principal design
criteria for EDGs to seet
their functional require-
ments under design base
conditions. | Provides an acceptable design base for possible LR. | IEEE 387 is current-
ly being revised.
Will incorporate
IEEE Standerd 789
requirements. IEEE–
387 stready swentions
seging and seging ear-
segment techniques. | None. | 7 | Provides the minimum service requirements for the design staff (ARE) including operational cycles, operational hours, temperatures (max. and min.), seismic response, radiation, humbidity, air quality etc., i.e., all the conditions that should be considered in the design. Fortyseven (47) design and application considerations are given in the standard. | | (9) | EXTERNAL ENVIRON- MENTAL FACTORS, INCLUDING: - CHEMICALS - MANID ITY - OILS AND COMMUS- TION PRODUCTS - DUST AND FOME GON MATERIAL ON RELAYS/CONTACTS - MATURAL HOMEON- ENA-EARTHOUMACS, FIRE AND FLOODS, ETC. | CFRs 10 CFR 50,49 | Provides that environ-
mental specifications be
submitted for electrical
anfety-related equipment
that address
environ-
mental fectors, e.g.,
aging, radiation, temper-
atures, and humidity, and
other conditions, e.g.,
loss of ventilation,
vibrations, and pipe
breeks. | Addresses aging
and degradation
issues applicable
to conditions of
plant for LR. | 7 | None. | Are the specification sufficient for current real-time conditions? | | | (10) | | 10 CFR 50,
Appendix A | GDC of Appendix A includ-
ing 2 and 4 require
design bese for natural
phenomene, e.g., floods
and serthquake, and
stailes, e.g., EDG sust
be competible with normal
operation, accidents and
postulated missiles, and
pipe ship. | Address netural
phenomena. | м/А | None . | Is the plant's current
status the same or has a
change in seismic cate-
gory developed since
original license? | | | (11) | | 987e
2.4.2 | Refers to 10 CFR 50 GDC,
Criterion 2, "components
important to safety being
designed to withetend the
effects of hurricanes,
floods, taumeni, and
seiches." Also refers to
10 CFR 100 for identify-
ing and evaluating
hydrologic features of
the site. | Original design
considers flood
design and local
precipitation,
i.e., this will
provide records
history. A flood
history up-date is
also required. | None. | None. | Was the original design
adequate for current
conditions, i.e., has
the history changed? | The CFR principally provides the criteria for the original design. The CFR does not address the eging issues. | | COMPONENT COLLANS 1 | ISSUE
COLUNI 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES | AGING NEEDS
COLUMN 7 | COLUMN 8 | CURRENTS
COLUMN 9 | |---------------------|---|-----------------------|---|---|---------------------|---|---|---| | (12) | EXTERNAL ENVIRON-
NENTAL FACTORS
(CONTED) | SRPs (contd)
3,2.1 | Refers to 10 CFR 50, Appendix A, GDC, Criterion 2, for seissic classification to withstand earthquakes without a loss of ability to perform safety functions. Also refers to 10 CFR 100, Appendix A, for performence (SSE), including standay dissel generator auxiliary systems. | None. | Mgne , | None. | Verify that the compo-
nents seismic categories
have not changed. | The CFR principally provides the criteria for the original design. The CFR does not address the aging issue. | | (13) | | 3.5.1.1
3.5.1.2 | Provides for review and acceptance of internal and external missile protection for safety-required for safe shut-does of the plant. This ultimately mitigates damage or disgradation to the EGG system from missiles. | The protection must be for the life of the plant. | None. | None. | None, unless design base
has changed to warrant
additional protection
from missites. | These requirements are principally start-up requirements, but remain in effect for the life of the plant. | | (14) | | 3.11 | Provides for acceptance criteria stipulating that the sechnical component will perform satisfactorily for the "length of time" for which its function is required for harsh and aild environments. | Provides records
for environmental
acceptance and
qualification. | M/A | Should be specific in
stating that acceptance
should be maintained
over the life of plant. | Acceptance criteria
needed for LR. | This is principally an ecceptance criteris standard; the SRP does not address the life of plant issues. | | (15) | | 7.1 | Provides acceptance
criteria of instrumen-
tation and controls.
Refers to 10 CFB 50, GDC
and IEEE 279 for design
basis for natural phe-
nomens and environmental
concerns. | Provides accep-
tance criteria
records. See
table 7.1, "Accep-
tance Criteria," | None. | Should be apacific in
stating that acceptance
should be maintained
over the life of plant. | Acceptance criteria
needed for LR. | Although the SAP does not discuss aging or LR, the
SAP requirements should be useful to aging manage-
ment and LR if adequate records are amintained for
the life of the plant. | | (16) | | 9.5.4 | EDG (starting) engine
fust oit - raview deter-
mines the quality of the
engine fust oit. System
should be free from oit
degredation to prevent
engine feiture. | Provides acceptance criteria and records. | None - | None. | Acceptance criteria
needed for LE. | Although the SMP does not discuss aging or LR, the
SMP requirements should be useful to aging menage-
ment and LR if the requirements are set and adequate
records are maintained for the life of the plant. | | (17) | | 9.5.6 | EDG engine start-system -
review requires deter-
mining the adequacy of
the quality and condition
of the air supply.
Clean, dry air required. | Provides records
for system status. | None. | None, | Acceptance criteria
needed for LR. | Although the SRP does not discuss sging or LR, the
SRP requirements should be useful to aging manage-
ment and LR if the requirements are set and adequate
records are meintained for the life of the plant. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS
COLUMN 8 | COMMENTS
COLUMN 9 | |-----------------------|---|--|---|---|------------------------------|-------------------------|---|---| | (18) | EXTERNAL ENVIRONMENT
FACTORS (contd) | SRPs (contd)
9.5.7 | EDG engine lub system -
lub oil temperature Must
be meintained. | System records. | | | | | | C 19) | | 1.29 | EDG must be designed for
seismic category 1 for
SSE occurrences. | lione. | Mone. | W/A | The original design
must be adequate for
current known seismic
conditions or postulated
conditions. | | | (20) | | 1.100 | Seismic quelifications,
principles, procedures
and methods. | Hone, | Hone. | M/A | LR questions should be addressed in the RG. | Refers to IEEE Standard 344-87. | | (21) | | ASPE Code
Section III
Section XI | EDGs by definition are
class 1, 2, and 3 com-
ponents; however, the
EDGs are not pressure
vessels or piping, etc. | None. | None. | Hone. | Hone. | The ASME codes as required in 10 CFR 50,55s mandate ISI. These requirements rarely involve EDG unless a specific part is designed and manufactured in accordance with the Code. | | (22) | | AMS
2.2 | Minimum instrumentation
for system input of
ground motion to provide
evaluation of data
whether or not vibratory
motions have been
exceeded. | Instrumentation
should provide
records of plant
service. | W/A | None. | Morre. | | | (23) | | 2.8 | Nethodology is described
to evaluate the flood
having virtually no risk
of exceedence that may be
caused by precipitation
and snowelt and dom
failures. | Hone. | M/A | None. | Hone. | | | (24) | | 2.10 | Defines the type of tim-
ing of plant owner activ-
ities required in the
event of an earthquake
and includes specific
procedures for the evalu-
ation of records obtained
from seismic instrumenta-
tion specified in ANE-
2.2-1978. | Records of plant
activities that
may assist in LR. | W/A | None. | Hone. | | | (25) | | 2.12 | Provides guidelines that
ellow reactor designers
to select hazards, e.g.,
natural; wan-made or
combinations of hazards,
that effect the design of
system and components. | None. | 9/A | Hone . | None. | | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING NEEDS
COLUMN 7 | LIFE EXTENSION NEEDS
COLUMN 8 | COMMENTS
COLUMN 9 | |-----------------------|---|-----------------|--|---|--|-------------------------|--
---| | (26) | EXTERNAL ENVIRON-
NENTAL FACTORS
(contd) | 16EE
308 | Design base criteria for
Class IE equipment to
enable them to meet their
functional requirements. | Provides an accep-
table design base
for possible LR. | 7 | None. | Mone. | Includes power systems, e.g., diesel generators; design base includes malfunctions, accidents or operating modes that could lead to degradation of the systems. Melfunctions are defined as matural phenomena, e.g., earthquikes and floods, and postulated phenomena, e.g., anvironmental factors of pressure, hamidity, temperatures, and accidents, e.g., fires. | | (27) | | 323 | Addresses ability to
perform mafety function
due to aging, including
factors of natural and
environmental conditions
that must be addressed. | Acceptance and qualifying records. | 7 | None. | Mone. | IEEE Standard 325 as opposed to other instruments
reviewed recognizes the need for aging and defines
steps to address aging such as age conditioning and
natural aging criteria. | | (28) | | 344 | Establishee recommended
practices to obtain data
to qualify that the
equipment will perform
one SEE after an OBE.
Included are tests for
vibrational aging, seis-
aic aging plus normal
operation loads. | Acceptance and qualifying records. | , | None. | None. | | | (29) | | 367 | Provides principal design
criteria for EDGs to meet
their functional require-
ments under design base
conditions. | Provides an acceptable design base for possible LR. | Standard is being
revised by IEEE
working group 4.2. | ltone. | None. | Provides the minimum service requirements for the design staff (AAE) including operational cycles, operational hours, temperatures (max. end min.), selamic response, radiation, humidity, and air quality, i.e., all the conditions that should be considered in the design. Fortyseven (47) design and application considerations are given in the standard. | | (30) | INTERNAL CHEMICAL
PHYSICAL PROCESSES,
AND CORROSION:
- CORROSION IN AIR
STARY SYSTEM
- THERMAL SHOCK | SEP# 9.5.7 | EDG engine tube system -
review determines if the
tub system prevents
deleterious material from
thermal shock entering
the tub oil system. | Records of accep-
tance criteria. | None. | None. | Heads acceptance
criteria re-established. | | | (31) | | 3.5.8 | EDG air intake system -
review determines that no
engine degradation will
be experienced during
maximum power output
(continuous) settings. | Records of accep-
tance criteria. | 7 | None. | Needs acceptance
criteria re-established. | | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT INITIATIVES COLUMN 6 | AGING WEEDS COLUMN 7 | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|---|---|---|---|--|--|---|---| | (32) | INTERNAL CHEMICAL
PHYSICAL PROCESSES,
AND CORROSION
(contd) | ASME Code
Section III
Section XI | EDGs by definition are
cless 1, 2, and 3 com-
ponents; however, the
EDGs are not pressure
vessels or piping, etc. | None. | 7 | None. | None. | The ASME codes as required in 10 CFR 50.55s mandate 191. These requirements rarely involve EDG unless a specific part is designed and manufactured in accordance with the Code. | | (33) | | 166E
308 | Provides design base
criteria for Class IE
equipment to emble them
to meet their functional
requirements. | Provides an accep-
table design base
for possible LR. | * | None. | None. | Includes power systems, e.g., diesel generators, design bese includes melitunctions, accidents, or operating modes that could lead to degradation of the systems. Relitunctions are defined as natural phenomens, e.g., earthquakes and floods, and postulated phenomens, e.g., environmental factors of pressure, hunidity, temperatures and accidents, e.g., fires. | | (34) | | 387 | Provides principal design
criteria for EDGs to meet
their functional require-
ments under design base
conditions, | Provides an accep-
table design base
for possible LR. | Standard is being
revised by IEEE
working group 4.2. | itone. | Monte. | Provides the minimum service requirements for the design staff (ARE) including operational cycles, operational hours, temperatures (max. and min.), seisakic response, redistion, hundrity, air quality etc., i.e., all the conditions that should be considered in the design. Fortyseven (47) design and application considerations are given in the standard. | | (35) | | 323 | Ability to perform sefety
function due to the
effect of aging must be
addressed. Types of
aging include thermat
conditions. | Acceptance and qualifying records. | 7 | tione . | tione. | IEEE Standard 323 as opposed to other instruments
reviewed recognizes the need for aging and defines
steps to address aging such as age conditioning and
natural aging criteria, | | (36) | SLRVETILLANCE: - INSPECTION - EXCESSIVE, MARSH AND FRECUENT TESTING - MALAD JUSTMENT/ MISAL IGHMENT - UMMECESSARY DISASSEMBLY FOR INSPECTION | T9a
3/4.8 | liane. | None. | PML steff through
the MPAR program
Technical Specifi-
cation Aging Task
are addressing the
TSs for eging
swingement. | The TSs should consider aging mechanisms/aging issues, | Provide evidence that
the TSs are adequate for
license renewal, i.e.,
are charges needed in
the TSs for LR? | Describes minimal AC electrical power requirements for operating and shutting down plants. | | (37) | | 3/4.8.1 oper-
ating status
and 3/4.8.1
shutdown status | Surveillance efforts
would detect an inoper-
able panerator by virtue
of the necessity to
assure an operable
generator; management of
aging is implied. | Inspection records. | Hone. | Not applicable. | Records of maintenance
inspection could provide
evidence for extended
use of the disset
generator. | | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 5 | LIFE EXTENSION
FEATURES
COLUMN 5 | CLEBENT INITIATIVES | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS COLUMN 9 | |-----------------------|----------------------|--|--|--|---------------------|--|---|--| | (38) | SURVEILLANCE (contd) | SRPs
8.1 Appendix
8-A
BTP ICSS(PSB)-8 | Use of generator for
peaking power is not
allowed prevents use of
generator in nonemergency
situations. | Should provide record of use, f.e., total service hours. | , | H/A | M/A | | | (39) | | à.3.1 | Provides review and acceptance criteria for operation of stand-by generator sets, especially as related operation at less than full load with no degradation for extended periods and that no load conditions shall be minimized. Stipulates that staff training, testing, preventative maintenance and repair procedures will be as intained. | Provides records
for acceptance of
stand-by power
supplies. | sone. | Is the acceptance cri-
terie useful for long-
term assurance that the
EDG will be reliable,
not degrade over time. | For LR, the required maintenance and training must be shown to be adequate for requalification of the EDGs. | The SRP does not specifically address aging or LR; housever, strongly implies aging memagement and LR because the SRP states the EDG shall not be subjected to degradation. This may be assumed to cover the life of plant and beyond. | | (40) | | 8.3.1 aTP-8
(PSB) | Provides restrictions for
using the EDG for
peak
power situations and
restricts overuse of the
EDG. | Limits degradation
of equipment and
provides for a
longer and useful
life. | None. | tione. | For LR, the required operating restrictions must be shown to be useful for life extension. | The BTP provides aging management by specifically restricting the use for peak power needs and controlling nonumergency use of the EDG. The BTP addresses the prevention of common failure mode of the EDG as related to main or off-site power. | | (41) | | 9.5.5 | EDG engine cooling water
system - raview deter-
mines the adequacy of in-
spection and testing of
the cooling water system. | Should provide
adequacy records
and status for
cooling water sys-
tem relative to
LR. | 7 | None. | aone. | Although the SRP does not explicitly discuss aging management or LR, the requirements should support LR if adequate records are maintained throughout the life of the plant. | | (42) | | 9.5.6 | EDG starting system -
review determines ade-
quacy of the inspection
and testing of starting
system. | Should provide
adequacy records
and status for
starting system. | 1 | None. | liane. | Although the SRP does not explicitly discuss aging management or LR, the requirements should support LR if adequate records are maintained throughout the life of the plant. | | (43) | | 9.5.4 | EDG fuel oil system -
review determines ade-
quacy of inspection and
testing of fuel oil
system. | Should provide
adequacy records
and status for
fuel oil systems. | 7 | None. | tione. | Although the SRP does not explicitly discuss aging management or LR, the requirements should support LR if adequate records are maintained throughout the life of the plant. | | (44) | | 9,5.7 | EDG engine lub system -
review determines the
edequacy of the inspec-
tion and testing of
engine lub system. | Should provide
adequacy records
and status for
engine lub system. | 7 | None. | liane. | Although the SAP does not explicitly discuss aging management or LR, the requirements should support LR if adequate records are meintained throughout the life of the plant. | | COMPONENT
COLUMN 1 | ISSUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION FEATURES COLUMN 5 | CURRENT ENITEATIVES | AGING NEEDS | LIFE EXTENSION NEEDS | COMMENTS
COLUMN 9 | |-----------------------|----------------------|---------------------------|---|---|---|--|--|---| | (45) | SURVEILLANCE (cantd) | SRPs (contd)
9.5.8 | EDG engine combustion -
review determines the
edequacy of the inspec-
tion and testing of
engine combustion system. | Should provide
adequacy records
and status for the
engine combustion
system. | 7 | None. | liane. | Although the SRP does not explicitly discuss aging management or LR, the requirements should support LR if adequate records are maintained throughout the life of the plant. | | (46) | | 13.2.1 | Operators and other
nonlicensed plant staff
training - the plant
staff are to be trained
to use the EDGs correct
ly. This implies aging
management. | Should provide
plant staff per-
formance training
records, i.e.,
adequacy of cur-
rent staff. | 7 | Mone. | Are the current records
up to date for present
staff for adequate LR
documentation? | The plant staff are expected to know how the EDG operates and performs; furthermore, they are expected to know how the EDG interacts within (other) plant safety-related systems. Documentation of training and demonstrations of trained staff could enhance aging management and LR applications. | | (47) | | 80s
1.9 | Provides qualification
and periodic testing,
test schedule and sur-
veillance and maintenance
guidance. | Provides records
and records -
keeping criteria
and reporting
criteria. | May be impected by
MPAR EDG studies by
PML. The MRC has
issued 1.9 Rev. 3
for comments,
November 1988. | Modification of feet
start testing, start-
run-cooldown require-
ments are needed to
reduce aging stressors. | Current status/condition of the equipment should be addressed for LR. | RG 1.9 references 10 CFR 50, Appendix A, Criterions 17 and 18, and Appendix B, Criterion XI. | | (48) | | Sefety Guide
Humber 30 | Establishes regulations
for GA relative to
testing of electrical
equipment, References
AMSI 845.2 and IEEE-336. | GA documentation. | 7 | 1 | Status of records and
recordseaping method
need to be verified for
LR. | Safety guide reference 10 CFR 50, Appendix 8, QA criterion for MPPs. | | (49) | | 1.33 | Refers to overall general
criterion for MPP
operation. | Implied by documentation. | 7 | N/A | A need exists to deter-
mine if the exiting
records and GA documen-
tation are adequate for
LR. | | | (50) | | 1.41 | Provides guidance for
testing after a major
modification. | Provides records
history of new
modifications. | 7 | 7 | 7 | | | (51) | | 1.58 | Establishes guidance for
the qualification of MDE
staff who perform inspec-
tions, tests and examina-
tion during the opera-
tions of MPPs. | Provides documentation of staff qualification and GA records, i.e., what is the status of past NDE performance? | , | | | Refera to AMSI M45.2.6-78. | | (52) | | 1.108 | Establishes that the EDG design should allow testing. The RG also defines the periodic preoperational 18-month testing requirements. | Establishes guid-
ance for records
and recordkeeping. | The NRC intends to
delete RG 1.108.
Guidelines will be
in revised RG 1.9. | Testing should be
changed to a slow start
to avoid faet-start
stressors. | Improved and less
stressful starting
procedures accompanied
by a program of per-
formance sonitoring and
trending are needed. | See "Recommended Practice for Aging Mitigation and Improved Programs for Nuclear Service Dissel Generators," MUREG-CR-5057/PML-6309. | | COMPONENT
COLUMN 1 | 1\$SUE
COLUMN 2
SURVEILLANCE (contd) | REG. INSTRUMENT COLLAN 3 ASME Code Section III | AGING FEATURES COLUMN 4 EDGs by definition are | LIFE EXTENSION FEATURES COLUMN 5 None. | CURRENT INL'IATIVES COLUMN 6 None. | AGING NEEDS COLUMN 7. | LIFE EXTENSION NEEDS COLUMN 8 None. | COMMENTS COLUMN 9 The ASME codes as required in 10 CFR 50.55a mentists | |-----------------------|--|---|---|--|---|---|--|--| | | | Section XI | Class 1, 2, and 3
components; however, the
EDGs are not pressure
vessels or piping, etc. | | | | | 181. These requirements rarely involve EDG unless a
specific part is designed and manufactured in
accordance with the Eode. | | (54) | | 681s
681 8-56 | Program to improve the reliability of EDG; goal of 95% success established. | 7 | Diesel reliability
program with MEMARC. | Reliability of EDG as a
function of age; what
are effects of age,
effects of testing over
time? | Effects of reliability decrease on licensing. | See also Regulatory Guide 1.108; MUREG/CR-0660. | | (55) | | GS1-91 | Continued reliability
and operability of
Transamerica DeLaval,
Inc., EDGs. | 7 | Transamerica
Detaval, Inc.,
Owners Group, | Effects of stress,
fatigue, testing on TOI
EDG show aging effects
faster than other
models? | Can plants with TDI EDG
continue to operate; how
to verify operability of
TDI EDG after thirty
years of service? | Issue involves potential main crankshaft failures.
See also BECY-83-84, IEM-83-58, and NumEG-1216 and
other models? | | (56) | | AMS
3.1 | Provides criteria for
selection, qualification,
and training of personnel
for stationary nuclear
power plants. | Provides record or
training of staff. | 7 | None. | itone. | | | (57) | | 3.2 | Provides recommendations and requirements for administrative controls, including written procedures, and QA program to help assure that activities of MPPs are carried out without risk to the health and safety of the public. | Administrative in-
place
controls
will probably be
required for LR.
The associated GA
documentation will
be useful for LR. | 1 | None. | None. | Among the activities covered under this standard are
design changes, fabricating, cleaning, decon,
inspecting, testing, maintaining, and repairing. | | (58) | | 165E
338 | Provides design and
operational criteria for
periodic testing of
safety system. | Acceptance testing of components for LR. | 7 | None. | None. | This standard does not address meintenance. | | (59) | | 336 | Provides minimum require-
ments for inspection and
testing of Class IE
power, instrumentation,
and control equipment
during construction
phase. | Records of con-
struction may be
applicable to LR. | 7 | None. | None. | Provides a criteria for correct installation which could effect aging aspects of the equipment after start-up and operation. Class IE is equipment that is essential to emergency shutdown, containment isolation, ECC, and CMR. | | COMPONENT
COLUMN 1 | 18SUE
COLUMN 2 | REG. INSTRUMENT | AGING FEATURES COLUMN 4 | LIFE EXTENSION
FEATURES
COLUMN 5 | CURRENT INITIATIVES | AGING MEEDS
COLUMN 7 | LIFE EXTENSION NEEDS | CONNENTS
COLUMN 9 | |-----------------------|----------------------|---------------------|---|--|---|---|--|--| | (60) | SURVEILLANCE (contd) | IEEE (contd)
749 | Provides standard for
periodic testing of EDG
including availability
tests, system operational
tests, and independence
verification tests. | Records of past
performance. | Standard will be
impacted by RG 1.9.
IEEE plans to delete
this standard. | Less streamful starting procedures and tests. | Less stressful starting procedures and test. | | | (61) | | 934 | Provides criteria for
replacement parts, both
construction and oper-
ation. Requires inspec-
tion and test of parts
prior to release for
service. | Acceptance testing and records that may be applicable to LR, e.g., failure review for weer, fatigue, original defects, and insulation breakdows. | Mone. | Wone. | None. | Standard determines selection of required parts for
Class IE equipment, e.g., identification and felture
review. However, required design changes are outside
the scope of this standard. | #### DISTRIBUTION No. of Copies ### **OFFSITE** M. Vagins, Chief Electrical and Mechanical Engineering Branch Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission 6550 Nicholson Lane Rockville, MD 20852 J. P. Vora, Section Leader Aging and Components Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission 6550 Nicholson Lane Rockville, MD 20852 C. Cerpan, Chief Materials Engineering Branch Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission 6550 Nicholson Lane Rockville, MD 20852 No. of Copies V. N. Shaw EG&G Idaho, Inc. P.O. Box 1625, WCB-3 Idaho Falls, ID 83415 #### ONSITE ## 49 Pacific Northwest Laboratory S. H. Bush J. A. Christensen M. E. Cunningham A. B. Johnson, Jr. (20) L. D. Kannberg J. W. Nageley W. B. Scott J. C. Spanner S. Somasundaram E. V. Werry (15) Publishing Coordination Technical Information (5) | NRC FORM 335 | U.S. NUCLEAR REGULATORY COMMISSION | 1. REPORT NUMBER | |---|--|---| | (2-89)
NRCM 1102,
3201, 3202 | BIBLIOGRAPHIC DATA SHEET | (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, If any.) NUREG/CR-5490 , Vol. 1 | | 2. TITLE AND SUBTITLE | (See instructions on the reverse) | PNL-7190 | | Dogulator | Ny Instrument Paulous Managaran C. S. C. C. C. | | | Major Sat | ry Instrument Review: Management of Aging of LWR fety-Related Components | 3. DATE REPORT PUBLISHED MONTH YEAR | | | , | October 1990 | | | · | 4. FIN OR GRANT NUMBER B 2865 | | 5. AUTHOR(S) | | 6. TYPE OF REPORT | | E.V. Werr | У | Technical | | | | 7. PERIOD COVERED (Inclusive Dates) | | Pacific N | NIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Co
Orthwest Laboratory
WA 99352 | ommission, and mailing address; if contractor, provide | | and mailing address.) Division Office of | of Engineering Nuclear Regulatory Research ear Regulatory Commission | lice or Region, U.S. Nuclear Regulatory Commission, | | Washingto | n, DC 20555 | | | 10. SUPPLEMENTARY N | OTES | | | instruments the aging of was conducte Laboratory of regulatory of were reviewed pressure ves generators. issues, incl testing; and safety-relat but include | eport comprises Part I of a review of U.S. nuclear part to determine the amount and kind of information the safety-related components in U.S. nuclear power plant for the U.S. Nuclear Regulatory Commission (NRC) under the NRC Nuclear Plant Aging Research (NPAR) Prinstruments, e.g., NRC Regulatory Guides and the Coded for safety-related information on five selected casels, steam generators, primary piping, pressurizer The focus of the review was on 26 NPAR-defined safuding examination, inspection, and maintenance and irradiation embrittlement. The major conclusion of the ded regulatory instruments do provide implicit guided little explicit guidance. A major recommendation for augmented to explicitly address the management of | ey contain on managing lants. The review by the Pacific Northwest ogram. Eight selected le of Federal Regulations components: reactors, and emergency diesel fety-related aging repair; excessive/harsh of the review is that ance for aging management is that the instruments | | 12. KEY WORDS/DESCR | PTORS (List words or phreses that will assist researchers in locating the report.) | 13. AVAILABILITY STATEMENT | | | instruments, safety-related components, codes and | unlimited 14, SECURITY CLASSIFICATION | | standards, | guides, general design criteria, life extension and | (This Page) | | life extensi | ion needs, aging management and aging issues includi
erosion, environment effects, harsh testing, wear, | ing: unclassified | | embrittlemer | unclassified | | | | | 15. NUMBER OF PAGES | | | | 16. PRICE | THIS DOCUMENT WAS PRINTED USING RECYCLED PAPER. # UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300 SPECIAL FOURTH-CLASS RATE POSTAGE & FEES PAID USNRC PERMIT No. G-67